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ABSTRACT

The paper deals with the bimaterial containing interface crack closed under an applied load. Thermal con
of the flaw's faces is non-ideal due to their roughness. Corresponding problem of heat conduction &
thermoelasticity is formulated. The statement takes into account dependence of contact thermal conducti
of the closed crack on the contact pressure of its faces and thermal conductivity of a medium filling tl
cavity. The methods of complex potentials and singular integro-differential equations are employed to sol
the problem. Numerical results are illustrated in graphs. They show dependence of a temperature ju
between the faces and stress intensity factors on parameters of surface roughness and thermal
mechanical load applied.

INTRODUCTION

Roughness is a feature of surfaces of inner flaws [1]. Its influence is especially of a great weight if tf
applied load governs flaws' closing. Then surface microroughness results in a discreteness of contact
real contact area depends on the contact pressure and changes with the load changing. Influenc
phenomena that are connected with this fact on strength of materials being under a mechanical loading
a subject of a series of both theoretical and experimental papers (see, e.g. [2-4] and the literature cited th.
If the body is under a thermal load, discreteness of mechanical contact of surfaces results in

imperfectness of thermal contact [5], which is characterized by either a thermal resistance or thern
conductivity - the quantity which is the reciprocal of the thermal resistance. A presence of contact thern
resistance causes a temperature jump between the conjugated surfaces.

As it was revealed in [6], an essential dependence of thermal resistance on contact pressure aff
parameters of thermoelastic interaction of bodies. But thermally induced stresses and thermal strengtf
bodies containing closed cracks with the thermal resistance depending on the applied load have not &
studied in the literature yet. In the paper [7] it was investigated thermal stresses in bimaterial containi
closed interface crack with the thermal resistance independent of pressure. Formation of interface pla
strips near the tips of the aforementioned crack has been studied in [8]. It was shown that thermal resiste
of the interface crack can provoke its opening [9]. Research in the branch of thermoelasticity of bodies w
opened cracks filled by a heat conducting medium was pioneered in the paper [10] and developed in [11]
a series of publications [11-14] it was analyzed a thermostressed state of the flawed structures posses
both zones of direct contact and contact fault. Our paper is aimed to study thermal stresses in

neighborhood of the crack with rough surfaces that is closed under the applied load. It is employed t
model of imperfect thermal contact of crack faces allowing the dependence of its thermal conductivity on
contact pressure of faces and thermal conductivity of the medium filling the cavities between contactil



microunevenness. The solution to the problem is presented through the jumps of temperature and tange
displacements of crack's faces. To evaluate these jumps a system of integro-differential equations
obtained. Temperature of surfaces and stress intensity factors are determined. It is revealed new phenor
caused by imperfectness of thermal contact of the crack faces.

STATEMENT OF THE PROBLEM

Let us consider a 2a-length crack located at the interface of two half-danasd D, (Fig. 1). Uniformly

distributed compressive load p and heat flow g are applied at infinity. Compressive load causes crac
closure. We assume that mechanical contact of crack faces is frictionless and thermal contact is imper
due to microunevenness of faces and contact discreteness. According to the theory of contact heat exch
[5] we describe crack’s thermal conductivity by a functigiix) such that

An(¥) = Ae + KP(X). (2)

Here the first term\. allows thermal conductivity of crack’s filler. The second teKR(x) describes

increasing of conductivity with increasing of contact presspe of crack’s faces. CoefficienK >0

depends on mechanical and thermophysical properties of the material as well as on the geome
characteristics of the faces.
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Figurel: Model of the problem

Ideal thermal and mechanical contact of the half-planes is in forth outside the crack.

Boundary conditions of the problem are the following:
— in regions of ideal contact outside the cragk=(0 and|x [> a)

T°'=T,q)=q;,0 =0, 15 =1, u" =u, vi=v] (2
y Hyr Py TPy by T iy

— in a zone of crack’s occupatioy €0,|x k a)

gy =dy,, AT =T =0y, oy =0, Vv =0 ©)

y Ty
— at infinity

qx =0, qy =q, Gy =-p Txy =0. (4)



Here T is a temperatureqy, d, are components of heat flow vecto, oy, T, are components of a stress

tensor; u,v are components of displacement vector. Superscriptarid “~ denote boundary values of
functions at the interface in the half-plari@s and D, respectively.

METHOD OF SOLUTION

In order to solve the problem let us present temperature, heat flows, displacements and stresses inside
the upper and the lower half-plane through the Muskhelishvili complex potentials [15] in the form [7]

T=Reh () +F1q, ~0, = AR -0, 26, +IV) =KD, () + D, (D) - (2~ 2P, (D +B,F(2)
M H

o, +0, :4Re[<Dk(z)]— p 0, ~iT, =P (2~ D, (2) +(z-2)®, (2) -p, zOD,, k=12

where R (2), () are piece-wise holomorphic functions in the whole plane el is the jump line for

them). Using boundary conditions of the problem we can present these functions in terms of jumps
temperaturey(x) and shear displacemerii§x) of crack’s faces:

“y(t)d (-)“GG U'(tyd U
Fk(Z):—#)\k_a\{(_)z! q’l(z):‘q’z(z):G—WlZ%Fk(z) 1%] at(_) EZDD k=12, (6)

where y(X) =T~ =T, U(X)=u™ —u"; Gi; =Gy +GoKy, Gip =Gy +Gkp; K =3-4v,A =20 A, /(A +A,),
A\ is the coefficient of heat conductivity; is Poisson’s coefficientia is the coefficient of linear thermal
expansionp = 2a(l+ v)G. Index k indicates that the quantity is related to the half-plaggk =1, 2) .

Presentations (5),(6) satisfy all boundary conditions of the problem except for conditiprmd3(33.
Satisfying these equalities yields a system of singular integro-differential equations in fugctindgJ:

(e +KPOOYO) ~ 5 I&—q |X|<a y(+d =0 (7)
U(t)d 7‘“1213@ 0,|xkal 3 =0Q (8)

—a

Solving equation (8) we can represent functid(x) through the functiony(x):

U = “‘“25/()— \/—dﬁjv(t)d, ©
a% - x L

whereG; =G, +G,,,n;, =N,G., +N,G.;, N, =a, 1+, )/A,, (k=12).

As one can see from formulae (5), (6), (9), temperature field and stressed state of bimaterial are comple
defined by a single functiog(x) . In particular, a contact pressure of crack’s faces is in the form:

O - O
P(x) = p-}‘G—lfz 21" y(x) - Gml N =1 — 1, Gr =Gy —Gyy. (10)
G« E G*]_G* 2H\/jaz - X2 E




Thus, the problem has been reduced to evaluation of the fungiprfrom the equation (7), wherg(x) is
in the form (10).

As one can see from the formula (10), the contact pressure of crack’s faces qualitatively depends on the
lationship between thermal and elastic parameters of materials. Specifically, it can be available suct
combination of these parameters thi¥k) becomes negative and this will point on the crack opening.

Therefore, the consequent investigation should be carried out separately for the each range of mate
parameters, where contact pressBfe) qualitatively behaves in the similar manner, i.e. ensures contact of

crack faces. Below we consider two certain examples, namely cases of mechanically different and identi
materials.

EXAMPLES AND NUMERICAL RESULTS
Case 1. Different shear moduli of the half-planes.

Let us study interaction of two half-spaces possessing different shear mGg#liG,) but the same
Poisson’s coefficients and thermal characteristigs= v, =v,qq =a, =a,\; =\, =\. Suppose that a
medium is absent inside the crack.E0) and its thermal conductivity depends on contact pressure of
crack’s faces only X, (x) = K (x)). The materials are assumed not to be under an action of any externa
mechanical load{ = 0) but subjected to the heat flow at infinity. Then the expression for the pressure of
crack’s faces is in the form:

G,.G,(1+Vv)aG;
P = 2 L 1)
il \/1—(x/a)2
As it follows from (11), contact pressure of the faces is positive if
q(G,-Gy) >0. (12)

In what follows we assume that the condition (12) is fulfilled. To this end the heat flow is required to b
directed from the material with the greater shear modulus to the material with the less one.

In this case the singular integro-differential equation (7) takes the form

~ K§r (t)d _ 1 GGy+v) -
P yx 2n tox T4 Y@ a6, (13)

The solution to this equation is the following function:

¥(x) = dacy/1- (x/ af / MH J1+ 8a3qm<q/)\2)). (14)

Taking into account (5), (6), (9), (14) the interface stress intensity factors (SIFs), which are defined by t
expressionkj = Im {1/2(ix —a)oy(x,O)}, k3= Im {1/2(ix —a)Tyy (x,O)}, can be rewritten as:
X - *a X - *a

AL+ V)A+1)(Gy + Gp)GiGo 1

ki =0, k
! GuGrpv/a

(15)
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Numerical calculation is carried out in dimensionless quantitﬁs:.q&,v:ylﬁ: P
0

o Ga(1+v)y, '
K =kE/[Ga(1+v)y,Val, X=x/a, G,=G,/G,, K =[82Ka(l+Vv)q,G,]/\. Hereq, is a heat flow of
unit density (qo :1W/m2), Yo is the temperature jump in the center of thermally insulated crack being
under the heat flovgg at infinity (yO = 2aqo/)\).
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Figure 2: Dependence of the stress intensity faJ_cioon the heat flong

Influence of a heat flow on the S is shown in Fig. 2 for various values of parameferOne can see
that | k3 | increases withg increasing, decreases wikh increasing and non-linearly depends®n

Dependence ok3 on parameteG, (from the ranged < G, < 1), which characterize respective rigidity of
the upper material, is shown in Fig. 3 for various values of pararfet&IF E% increases with increasing
of G, and decreases with increasingtof .
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Figure 3: Influence of the relative shear modLEJZSDf the upper half-plane on the Sﬁg

Case 2. Identical materials.

Let us consider a crack in a homogeneous matetigk (i, =a, Mi=A =N, vi=v,=Vv,G; =G, =G).
The crack is closed due to an action of two concentrated forces of int€gdityat are applied on opposite
sides of the crack in the points= +id and directed perpendicularly to the crack (Fig. 4).
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Figure 4: A closed crack in a homogeneous plane

Complex presentations of temperature, displacements and stresses are in the form:

I - 2 0 12\ _ a2
T= R%(z)+%§ 2G(U' +iv) :Kq)k(z)"'q)k(z)_(Z_Z)CDL(Z)+BF(Z)—F3 2z°+d°)-4d

@+
- — 2 2\ _ A2 P
0, -1ty =9, -2 +z-20@ R HEIST 0,40, =4ReD, @)~ 0o
a _nk a,p
R0 =5 0L, () = 0,0 = C 8 [UOL 2[13“ (Y0d 5 XS Jem,. ke

where = 2a(1+ v)G, k =3—-4v, P,=Rd/m(1+K).

The temperature jumg(x) can be deduced from the equation

(k —1)(x? +d?) +4d? X(t)
é\c rKR (x2+d2)2 X)- 2n =0 Ix[a v(*3 =0. (16)
}\ca R g=KaG g_d c_x 7_t
Introducing dimensionless functions and consta{rrts—Y A = =36 K=7% ,d= a,i— a,C— 2

let us present dimensionless temperature jump as a sum [16]
5 M
Y(©E) =41-¢ Z meZ(m—l)(‘i) , (17)
m=1

where U_(§) =s( m+Dawy ¢&))/1- &2 are the Chebyshov polynomials of the second kitg, are

the unknown coefficients. Substituting expression (17) into equation (16) yields a functional equatio:
Satisfying it inM collocation points chosen as zerdgs= a)s(kn/ ZM) of the polynomialU,,-1(S) we

arrive at the system of linear equations on the unknown coefficigpts

M KB4 32 4 €2 + 452 _40 _
z:lAkam =1, Aym= %( R (1<n(111(i)(d§+)§+2;1§| %-‘ Eé\rﬂl ﬁ* 2mZ 1%2(m—1)(‘§k), k=1M. (18)



Grounding on the numerical solution of the system (18) it has been carried out a parametrical analysis of
temperature jump between the crack faces and thé&&SfBr v=025 andK =2. Note, that dimensionless

1
o e 1
SIF is defined ak3 =55 [V
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Figure 5: Dependence of the temperature jyop the magnitude of theoncentrated forc@0

Fig. 5 illustrates dependence of temperature jump between crack’s faces on intensity of concentrated fot
provided the distance from the points of the force applying to the crack is fixed. Increasing of the forc
results in overall reducing of temperature jump. In so doing the local minimum arises in the center of tl
crack (€ =0), where the functiony(§) attains its maximum in the case of load absence. The maximum of

the temperature jumpmax is reached in the vicinity of crack’s faces (at the poftst0, , iffR) =5).
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Figure 6: The SIFk, versus the distance.

Figure 6 illustrates a relationship between the distance from the points of applying of fixed forces to tl
crack (d=01) and the SIF@-’ for various conductivities of a medium in the crack. It is easily seen that the
SIF reaches its minimum ak= 0,38 . The greater conductivity the less SIF.



CONCLUSIONS

Imperfect thermal contact of crack's faces, which is caused by their roughness and a presence of a fille
side the crack, induces qualitatively new rules of thermomechanical behavior of the material that are not
served in the case of opened thermally insulated cracks. In particular, temperature field and stress inter
factor k, non-linearly depend on the mechanical load normal to the crack, while in the case of opened cre

[17] neither T nork, depend on this load. In the case of interface crack thekSl&nd temperature jump

between the crack's faces are non-linear functions of physical parameters of bimaterial's components al
heat flow. Increasing thermal conductivity of the crack's filler causes decreasing temperature jump betwe

the faces and as a result decreasing stresses and the, SThe results obtained show that intensity of

thermal stresses in bimaterial containing interface closed crack essentially depends on material combinat
Thus by appropriate choosing of the bimaterial components it is possible to reduce stresses if necess
Another way to reduce thermal stresses is to apply mechanical load resulting in a compression of cra
faces.
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