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ABSTRACT

The paper deals with the bimaterial containing interface crack closed under an applied load. Thermal contact
of the flaw's faces is non-ideal due to their roughness. Corresponding problem of heat conduction and
thermoelasticity is formulated. The statement takes into account dependence of contact thermal conductivity
of the closed crack on the contact pressure of its faces and thermal conductivity of a medium filling the
cavity. The methods of complex potentials and singular integro-differential equations are employed to solve
the problem. Numerical results are illustrated in graphs. They show dependence of a temperature jump
between the faces and stress intensity factors on parameters of surface roughness and thermal and
mechanical load applied.

INTRODUCTION

Roughness is a feature of surfaces of inner flaws [1]. Its influence is especially of a great weight if the
applied load governs flaws' closing. Then surface microroughness results in a discreteness of contact and
real contact area depends on the contact pressure and changes with the load changing. Influence of
phenomena that are connected with this fact on strength of materials being under a mechanical loading was
a subject of a series of both theoretical and experimental papers (see, e.g. [2-4] and the literature cited there).
If the body is under a thermal load, discreteness of mechanical contact of surfaces results in an
imperfectness of thermal contact [5], which is characterized by either a thermal resistance or thermal
conductivity - the quantity which is the reciprocal of the thermal resistance. A presence of contact thermal
resistance causes a temperature jump between the conjugated surfaces.

As it was revealed in [6], an essential dependence of thermal resistance on contact pressure affects
parameters of thermoelastic interaction of bodies. But thermally induced stresses and thermal strength of
bodies containing closed cracks with the thermal resistance depending on the applied load have not been
studied in the literature yet. In the paper [7] it was investigated thermal stresses in bimaterial containing
closed interface crack with the thermal resistance independent of pressure. Formation of interface plastic
strips near the tips of the aforementioned crack has been studied in [8]. It was shown that thermal resistance
of the interface crack can provoke its opening [9]. Research in the branch of thermoelasticity of bodies with
opened cracks filled by a heat conducting medium was pioneered in the paper [10] and developed in [11]. In
a series of publications [11-14] it was analyzed a thermostressed state of the flawed structures possessing
both zones of direct contact and contact fault. Our paper is aimed to study thermal stresses in the
neighborhood of the crack with rough surfaces that is closed under the applied load. It is employed the
model of imperfect thermal contact of crack faces allowing the dependence of its thermal conductivity on a
contact pressure of faces and thermal conductivity of the medium filling the cavities between contacting



microunevenness. The solution to the problem is presented through the jumps of temperature and tangential
displacements of crack's faces. To evaluate these jumps a system of integro-differential equations is
obtained. Temperature of surfaces and stress intensity factors are determined. It is revealed new phenomena
caused by imperfectness of thermal contact of the crack faces.

STATEMENT OF THE PROBLEM

Let us consider a 2a-length crack located at the interface of two half-planes 1D  and 2D  (Fig. 1). Uniformly

distributed compressive load p and heat flow q are applied at infinity. Compressive load causes crack’s
closure. We assume that mechanical contact of crack faces is frictionless and thermal contact is imperfect
due to microunevenness of faces and contact discreteness. According to the theory of contact heat exchange
[5] we describe crack’s thermal conductivity by a function )x(Ìn  such that

)x(KP+Ì=)x(Ì cn . (1)

Here the first term cÌ  allows thermal conductivity of crack’s filler. The second term )x(KP  describes

increasing of conductivity with increasing of contact pressure )x(P  of crack’s faces. Coefficient 0>K

depends on mechanical and thermophysical properties of the material as well as on the geometric
characteristics of the faces.

Ideal thermal and mechanical contact of the half-planes is in forth outside the crack.

Boundary conditions of the problem are the following:
— in regions of ideal contact outside the crack (0=y  and a>|x| )
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Figure1: Model of the problem



Here T  is a temperature; yx q ,q  are components of heat flow vector; xyyx Õ ,Ô ,Ô  are components of a stress

tensor; v ,u  are components of displacement vector. Superscripts “+” and “–” denote boundary values of

functions at the interface in the half-planes 1D  and 2D  respectively.

METHOD OF SOLUTION

In order to solve the problem let us present temperature, heat flows, displacements and stresses inside both
the upper and the lower half-plane through the Muskhelishvili complex potentials [15] in the form [7]
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where )z(· ),z(F kk  are piece-wise holomorphic functions in the whole plane (line 0y =  is the jump line for
them). Using boundary conditions of the problem we can present these functions in terms of jumps of
temperature )x(γ  and shear displacements )x(U  of crack’s faces:
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kÌ  is the coefficient of heat conductivity; ν  is Poisson’s coefficient; α  is the coefficient of linear thermal

expansion; G)Î1(Â2Ã += . Index k  indicates that the quantity is related to the half-plane )2 ,1k( Dk = .

Presentations (5),(6) satisfy all boundary conditions of the problem except for conditions (3)2 and (3)5.
Satisfying these equalities yields a system of singular integro-differential equations in functions γ  and U:
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Solving equation (8) we can represent function )x(U′  through the function )x(Ä :
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As one can see from formulae (5), (6), (9), temperature field and stressed state of bimaterial are completely
defined by a single function )x(Ä . In particular, a contact pressure of crack’s faces is in the form:
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Thus, the problem has been reduced to evaluation of the function )x(Ä  from the equation (7), where )x(P  is
in the form (10).

As one can see from the formula (10), the contact pressure of crack’s faces qualitatively depends on the re-
lationship between thermal and elastic parameters of materials. Specifically, it can be available such a
combination of these parameters that )x(P  becomes negative and this will point on the crack opening.
Therefore, the consequent investigation should be carried out separately for the each range of material
parameters, where contact pressure )x(P  qualitatively behaves in the similar manner, i.e. ensures contact of
crack faces. Below we consider two certain examples, namely cases of mechanically different and identical
materials.

EXAMPLES AND NUMERICAL RESULTS

Case 1. Different shear moduli of the half-planes.

Let us study interaction of two half-spaces possessing different shear moduli (21 GG ≠ ) but the same

Poisson’s coefficients and thermal characteristics  ÌÌÌ ,ÂÂÂ ,ÎÎÎ .====== 212121  Suppose that a

medium is absent inside the crack ( 0Ìc = ) and its thermal conductivity depends on contact pressure of

crack’s faces only ( )xP(K)x(Ìn = ). The materials are assumed not to be under an action of any external
mechanical load ( 0p = ) but subjected to the heat flow q  at infinity. Then the expression for the pressure of
crack’s faces is in the form:
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As it follows from (11), contact pressure of the faces is positive if
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In what follows we assume that the condition (12) is fulfilled. To this end the heat flow is required to be
directed from the material with the greater shear modulus to the material with the less one.

In this case the singular integro-differential equation (7) takes the form
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The solution to this equation is the following function:

( ) ( )( )23 λπ8+1+1λ−=(γ /KSqaa/xaq)x 1
214 . (14)

Taking into account (5), (6), (9), (14) the interface stress intensity factors (SIFs), which are defined by the
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Numerical calculation is carried out in dimensionless quantities: 
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2 18 . Here 0q  is a heat flow of

unit density ( )2
0 1 mWq = , 0Ä  is the temperature jump in the center of thermally insulated crack being

under the heat flow 0q  at infinity ( )λ=γ0 /aq02 .

Influence of a heat flow on the SIF ±2k  is shown in Fig. 2 for various values of parameter K . One can see

that |k| 2
±  increases with q  increasing, decreases with K  increasing and non-linearly depends on q .

Dependence of ±2k  on parameter 2G  (from the range 1G0 2 ≤≤ ), which characterize respective rigidity of

the upper material, is shown in Fig. 3 for various values of parameter K . SIF ±
2k  increases with increasing

of 2G  and decreases with increasing of K .

Case 2. Identical materials.

Let us consider a crack in a homogeneous material ( ÂÂÂ 21 == , GGG , ÎÎÎ , ÌÌÌ 212121 ====== ).

The crack is closed due to an action of two concentrated forces of intensity 0P  that are applied on opposite

sides of the crack in the points i dz ±=  and directed perpendicularly to the crack (Fig. 4).

Figure 2: Dependence of the stress intensity factor 2k  on the heat flow q

Figure 3: Influence of the relative shear modulus 2G of the upper half-plane on the SIF 2k



Complex presentations of temperature, displacements and stresses are in the form:
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The temperature jump )x(γ  can be deduced from the equation
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let us present dimensionless temperature jump as a sum [16]
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the unknown coefficients. Substituting expression (17) into equation (16) yields a functional equation.
Satisfying it in M  collocation points chosen as zeroes ( )M/kcosk 2π=ξ  of the polynomial )Ï(U 1M2 −  we

arrive at the system of linear equations on the unknown coefficients mX :

, 1XA
M

1m
mkm =∑

=
 )Ï(U

2
1m2

M2
Ñksin

)Ïd)(Ë1(Ñ

d4)Ïd)(1Ë(
dPKÌA k)1m(222

k
2

22
k

2

0ckm −










 −+









++

++−+= , M,1k = . (18)

Figure 4: A closed crack in a homogeneous plane



Grounding on the numerical solution of the system (18) it has been carried out a parametrical analysis of the

temperature jump between the crack faces and the SIF ±
2k  for 25,0Î=  and 2K = . Note, that dimensionless

SIF is defined as ∫
−
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1

1
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Fig. 5 illustrates dependence of temperature jump between crack’s faces on intensity of concentrated forces
provided the distance from the points of the force applying to the crack is fixed. Increasing of the force
results in overall reducing of temperature jump. In so doing the local minimum arises in the center of the
crack ( 0Ï = ), where the function )Ï(Ä  attains its maximum in the case of load absence. The maximum of

the temperature jump maxÄ  is reached in the vicinity of crack’s faces (at the points 770,±≈ξ , if 5P0 = ).

Figure 6 illustrates a relationship between the distance from the points of applying of fixed forces to the

crack ( 1,0d ≥ ) and the SIF ±
2k  for various conductivities of a medium in the crack. It is easily seen that the

SIF reaches its minimum at 38,0d ≈ . The greater conductivity the less SIF.

Figure 5: Dependence of the temperature jump γ on the magnitude of the concentrated force 0P

Figure 6: The SIF 2k  versus the distance d .



CONCLUSIONS

Imperfect thermal contact of crack's faces, which is caused by their roughness and a presence of a filler in-
side the crack, induces qualitatively new rules of thermomechanical behavior of the material that are not ob-
served in the case of opened thermally insulated cracks. In particular, temperature field and stress intensity
factor 2k  non-linearly depend on the mechanical load normal to the crack, while in the case of opened crack

[17] neither T nor 2k  depend on this load. In the case of interface crack the SIF 2k  and temperature jump

between the crack's faces are non-linear functions of physical parameters of bimaterial's components and a
heat flow. Increasing thermal conductivity of the crack's filler causes decreasing temperature jump between
the faces and as a result decreasing stresses and the SIF 2k . The results obtained show that intensity of

thermal stresses in bimaterial containing interface closed crack essentially depends on material combination.
Thus by appropriate choosing of the bimaterial components it is possible to reduce stresses if necessary.
Another way to reduce thermal stresses is to apply mechanical load resulting in a compression of crack's
faces.
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