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ABSTRACT

The paper suggests an approach for consideration of the problem for cracks with contacting surfaces.
approach is based on posing the boundary conditions in terms of principle stress orientations on the cr
surface. The magnitudes of stresses remain unknown.

This boundary value problem is considered for an infinite plane with a straight crack. The method of singu
integral equations is applied to analyse the solvability of the problem. It is shown that the solvability deper
upon the number of rotations of the principal stress axes while traversing the crack. In contrast to f
classical formulations (where the problem has unique solution) the number of rotations determines 1
number of linearly independent solutions of the problem. Thus, a general solution containing a certe
number of unknown constants can be built.

INTRODUCTION

Common formulations of the boundary value problem for a 2D crack require assigning normal and she
stresses (or their combinations) on the crack surface. In most cases of cracks propagating under tel
stresses the crack surfaces do not interact with each other. Hence the formulation of the boundary condit
does not meet any difficulties, solution of the problem is unique and consistent with the mechanical point
view. On the other hand when a body in subjected to compressive or shear loading the crack surfaces me
in full or partial contact. The latter substantially complicates formulation of the boundary value probler
because the positions of contact zones aspriory unknown. Hence some hypotheses regarding
configuration of contact zones should be used, which can lead to paradoxical results. The contact prob
for a stamp indented into the boundary of a half-plane without sliding illustrates this statement. The ex:
solution shows oscillation of the contact stresses near the stamp edges, which contradicts with
assumption that the stamp is in contact everywhere. In this example the size of the oscillation zone (wr
solution is not valid) is comparatively small and the effect is often neglected. However, this effect should |
taken into account if one intends to investigate the stress distribution in the half-plane under the stamp ec
This is the case of interest for Fracture Mechanics since cracks start to grow from the region situated ur
the stamp edges. Thus, a correction of the boundary conditions may be required to provide consistenc
obtained results. However this presumes that some new assumptions will be needed for describing
contact conditions.

The present paper suggests an alternative approach to consider the problem for cracks with contac
surfaces. The approach is based on posing the boundary conditions in terms of principle stress orientat
on the crack surface. Galybin and Mukhamediev [1] established the solvability of this problem for the ca



of a 2-D domain bounded by a smooth closed contour. Here this type of boundary condition is investigal
for an open contour (straight crack) in the infinite plane. The information on the stress orientation can

determined in lab experiments. Also there are (e.g. [2]) well-developed methods of the determination
stress orientations in the earth's crust near tectonic faults which can be modelled by shear (or dilating sh
cracks.

It should be emphasised that the knowledge of stress/displacement surface magnitudes is not required ir
approach proposed. As it has been shown in [1], this type of boundary conditions may lead to the loss
uniqueness of the solution depending upon the number of rotations of the principal stress axes wi
traversing the contour. In contrast to the classical formulations (where the problem has a unique solution)
number of rotations determines the number of linearly independent solutions of the problem. Thus a gen
solution containing a certain number of unknown constants can be built. It is suggested to find the
constants by using a number of local stress or displacement measurements.

BASIC RELATIONSHIPS AND BOUNDARY CONDITIONS

A plane problem of elasticity can be formulated by means of the stress furietibnsrhese function are
related to the stress componenitsoy, Oy in Cartesian coordinat€xy as follows
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By introducing the complex variab#and

zZ=XxX+1iy, 2= x 1y (2)
one can write the Kolosov formulae (e.g., [3]) for the general solution of a plane elastic problem in the forn
P(zZ=o(3+0(} B zk="@()z¥()z (3)

where ®(z), W(z) are holomorphic functions of the complex variahldHere the same notations for the
functionsP andD are kept, although after the substitution of complex variables from Eqn. 2 they become

different. Nevertheless for any functions of two varialdlesne can keep in mind that = f(x, y)=

= f(Z;Z, 24 =1(z,2). As can be seen from Eqn. 3 the functRris a harmonic function while the

functionD is a bianalytic function inside a domain.
The major,T1, and minorT,, principal stresses can be determined by the stress funetemdD as follows
T =P+D, R=P-[D 2T 4)

Here and further throughout the text the argumenisof any complex-valued function may be omitted if
formulae are valid everywhere in the region. On the boundary the argument will be shown if necessary.

It is convenient to represent the bianalytic funciom the complex exponential form
— i argD — 1
D=[D™®, |D=_(%-B) (5)

The argument oD can also be associated with the angledf inclination of the major principal stre3s
with respect to thg-axis as arB=-2¢.

Let the Cartesian coordinat@xy be placed in the middle of a straight crack such that the crack occupies th
interval (1, 1) on thex-axis and is orthogonal to tlyeaxis.



In [1] it has been shown that if the orientation of principal stresses and curvature of their trajectories at
crack boundary are used as the boundary conditions then the problem can be reduced to determination c
functionD by the following conditions

argD =a (s), (argD)n =ap 6) (6)
Heren is the outward unit normal to the contoafs) and a',(s) are given functions on the contour. In the

case considered hesean be associated withand the derivative with respect to the outward normal can be
associated with the derivative with respecy.ttn the complex variables this operation takes the form

fy(xy) =iz -at(z3) @)
The boundary values of an arbitrary complex-valued function of two variables can be specified as
f*5(t)= lim f(z2) (8)
z- t£i0

where t(-l, 1) and indices £" are the boundary values for the upper and lower bound of the crack
correspondingly when traversing the contour in the positive direction.

In contrast to the case of closed contours, here a boundary condition at infinity should also be specified. T
condition could be posed in stress orientations as well. However for the sake of simplicity it is assumed tl
the stress functions vanish at infinity.

P—»O, D—»O, |2|—>°° (9)

Thus from the mechanical point of view the situation corresponds to the case of a plane with the crack wh
surfaces are loaded by unknown tractions. Body forces and stresses at infinity are absent.

According to [1] a pair of boundary conditions specified by Eqn 6 can be presented in the form of a sing
complex boundary condition. For the case considered it takes the form

im(eOn()) =0, 1m{¢* O g(d) = ¢ Oay (3 ), (- 1) (10)
Here the boundary values Bf,(t) anda'y(t) can be different on upper and lower surface of the crack.

INTEGRAL EQUATIONS

From Eqn 9 it follows that the holomorphic functiohéz), W(z) can be presented by the Cauchy integrals.
Following [4] the representation can be made in the form

_ 1 ol _ -1 ebo(t)  tg(t) O
®(2) = 2m-[t_zdt, W)= _Z+(t_z)25dt (11)
% %

where the functiog(t) is proportional to the derivative of the displacement jump across the crack contour

gx)=uU X+ iR = %(Ux(x,0+) — U %0-) + iy x0+) - iuf xO—)) (12)

X
whereG is shear moduluk=3-4v for the plane strain assumption awe(3-v)(1+v)™ for the plane stress,
in Poison's ratio.



With the account for Eqn, 3 and Eqgn. 13 one has the following representation for the flnction

:;Img(t)+(t_z)g£t)gdt (13)

° -z (t-2° O
=

Applying Egn 7, for the normal derivative one can derive the following expression

|
-_1J'E39(t)+@+ Az-2) 4 )0

Vi) B -2 T (-2° o 4

Boundary values dD can be obtained by direct applying the Sokhotski-Plemelj formulae to Eqn 13. Thei
application is obvious for the first integrand and as shown in [4] still valid for the second integrand.

D* = yu+il(u) (15)

whereu(t)=Re@(t)) andlu is the singular operator defined as

|
1 ¢ u(t)
() == —_dt (16)
e

Determination of the boundary values By are not so obvious due to the presence of singularities of higher
order in Eqn 14. Since the functig(t) is unbounded at the ends, this restricts the direct integration by parts
which is required to obtain the boundary values. However as it is shown in the Appendix, the Sokhotsl|
Plemelj formulae remain valid in their standard form, which leads to

g,i :ui(g’+u')—l(g’+u) (17)

Here and further on functions marked with prime without the sub-index means that they are differentiat
with respect tx.

Substituting these boundary values into Egn 10 one arrives to the system of four singular integral equatior

+

+usina® + com®lu=0, siruxi[u\/+2(u)—0(’i| (L)]+ cosi[u 2u4 (V) xa'® 412 0 (18)

The first two equation of this system are solvable only if the functiondepend on each other. This
dependence has the form

sin(a++o(‘)=o O a'+a” =1k, k=0xXk (19)
By denotinga=a" and accounting for exia(")=exp{a) and expic)=(-1)exp(ia), one can find that for the

solvability of the last two equations of the system the following necessary conditions should be imposed
the boundary values of normal derivatives of the argumet of

o('y+ +a’y =0 (20)

Let the term “principal stress trajectories” denote the curves, tangents to which coincide with the directio
of the corresponding principal stre§sor T, at any point. Principal stress trajectories form a curvilinear



orthogonal net inside the domain. Then the formulae given by Eqgns 19-20 ekeresgaction law of the
trajectories of principal stressem the loaded crack in the plane.

Then the system of for equations reduces to the following system of two equations
usina+ comlu=0, sim|V+2(uU)+ay (L)] + ci (v)-2u-ay J‘= 0 (21)

wherea'y=a"".
Both equations of this system represent singular integral equations of the dominant type. Since the f

equation in the system does not depends,aihe equations can be solved separately by reducing them to
corresponding Riemann boundary value problems, Gakhov [5].

REDUCTION TO THE RIEMANN BOUNDARY VALUE PROBLEM

The functionsu andv can be presented through the boundary values of piecewise holomorphic functior
A(z) andB(z) on the open contour (). In accordance with the Sokhotski-Plemelj formulae one has

u= A" - A ()= (A + A)v=B-B1(9=(8+ B), = A~ AJI( b= (iA+ A) (22

By substituting Egns 22 into Egns 18 one has a system for the determination of holomorphic fAz)ions
and B(z) by their boundary values on the intervidl) (-The equations of this system read

A=A A(), & x=-80 |h | (23)
B*()-2K" () -oy () A(H=- 80 B xr2 A kray( KAk |1x 1 (24)

Eqn 24 can be reduced to the form of Eqn 23 by introducing a piecewise holomorphic fuBici@pgasen
by the Cauchy-type integral with real density

aly(x) =BT() =B (X, %< (25)
Taking into account that due to Eqn 23 the following is validish |
O(’y(A+ — A A‘)=2A+[s+ +2d93" C (26)
the following boundary values of piecewise holomorphic funct@¥ can be introduced

C'(¥) =B (N-2A"(9-28"(J A( X C( k= iB( k+2 A( e B ( x A )x [x 1(27)

This leads to Eqn 23 with respect@3(x). Thus, the function&(z) andC(2) can be found from the same
equation; their boundary values can be determined and finally the boundary values of the Binctionto
be found by Eqn 27. Afterwards the solutionsd@ndv' can be obtained by Eqn 22.

The problem considered refers to the Riemann boundary value problem for open contours. It can be redt
to the case of half-plane by puttirg(x)=1 on k|>. Then the ends of the interval will be the points of
discontinuity ofG(x). This becomes obvious if the asymptotic behaviod at the crack tips is considered.
Independent of load it can be written in the form

V2mrD = (KIi +aK Y2 —(Ki -iK )e‘59’2 (28)



where K, and K;, are stress intensity factors, the indices tefer to the right and left crack tips
correspondingly and angkeis the polar angle in local coordinate system with the origin at the crack tip.
Now the argumenti=a(x) can be calculated. In particular, for points lying near the tips of the crack, the
argument oD does not depend df) and can be determined as follows

a1y 0) =argd(r )= argﬁKﬁ ):g%— sg(KIJ-Ir )% 0 eZa(u0 _q (29)

It is also can be seen that the arguntewbould gain the increment a¥2 if the point passed the crack end.

Thus the coefficient of the Riemann probl&tx) for infinite contour (e0,0) has discontinuities at points
x=t| and satisfies the Holder condition everywhere except these points. However the fuzi®eritered

into the solution of the Riemann problem and this function determinafits20) on (4,1) may have
discontinuities at pointsJ(-1,1) if the argumenti=a(x) is chosen to bexa<rt This will lead to necessity

to consider the Riemann problem which coefficient is discontinuous in more than two points. It can |
shown from the elementary analysis of the functisrarg(-u+ilu) that such discontinuous can be at the
points ¢, whereu=0 andlu changes its sign when passing these points. Thus at these points the argume
gains the increment2mif u=0 and+Ttif u=0. Due to periodicity 06* these jumps do not violate the Holder
condition but change the index of the homogeneous Riemann problem and hence affect the number o
solutions. The index can be calculated by the analysis of all jumps as it was done in [5]. However it
convenient to eliminate these jumps by introducing a continuos argame(d) on the Riemann surface. In
this case the index of the problem can be defined by a simple formulae

|
Index=N+1, N= iarg{ InG(t)]|+I _1 a'(t)dt (30)
2n -l
=
A similar expression for the index in the case of an arbitrary closed contour [1] has been interpreted as
doubled number of rotation of the principal stresses when traversing the contour. However here the inde:

calculated by summing the index due to the number of rotations of the principal stresses on the upper sur
of the crack and the index due to discontinuitysadtx=xl (which adds unity).

Now a general solution of the homogeneous Riemann problem (Egn 23) can be derived on the basis of
solution for the infinite contour ¢,»), Gakhov [5]. For the class unbounded at the ends and vanishing a
infinity it can be written in the form

[oe]

*(2) _ _
A = e FN(Z), (2 = 1 J-argG(t) 2N ardt—i)

T 2m t-2z dt (31)

wherePy(z) is an arbitrary polynomial of degrdewith real coefficients.

The boundary values assume the form

(o]

+i argG (%) 22 (X Ry(¥) 109 1 J-argG(t)—ZN ardt—i)

() = + N/2
22" (x2+1) t—x

Solutions foru andlu can be obtained by the Sokhotski-Plemelj formulae (Eqn 22)|&ratgc=0 and the
square root is continuous, henc&A" and consequently=0 andl u=2iA". On the crackx|<l they are

" 2n

—00

dt (32)



U =com(NE R, 1¢3=sim( XE X, €)= ¥ %72 k21"~ (3

Solutions forC*(x) have the form similar to Eqn 33, with the only difference being that another polynomial
should be used. Hence the corresponding expressions for the combinations in the square brackets in Ec
become known. Thus the solution is completed. It should be noted that the complete solution depends u
2N+2 real arbitrary constants. They should be determined from additional information on stress ¢
deformation measurement.

The SIFs can be found by passing to the limit in the solutionsdadv' by the following formulae, eg. [4]

K =ik =y lim (2rcullghd, o) = (4 + I V(3 dx (34)

X—»u'

The mode 1l SIF follows directly from Eqn 33. With the account for Eqn 31 this gives

N
KE = 2/2me VR (+ )(12+9 2 (35)

Expressions foK; are much complicated and not presented here.

CONCLUSIONS

The article presents the solution of the non-classical boundary value problem for a straight crack with 1
boundary conditions formulated in terms of principal stress orientations. This solution is non-unique;
depends upon a certain number of real constants determined by the index of the problem (Eqn 30).

It is also established that the orientations of principal stresses on the upper and lower surfaces of the c
cannot be given independently. They should satisfy Egn 19-20, otherwise the problem is not solvable.
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APPENDIX. BOUNDARY VALUES OF THE STRESS FUNCTION D.

The functiong(t) determined by Eqn 12 is unbounded at the ends of the intehyplhénce the direct
application of the Sokhotski-Plemelj formulae for the derivatives of the Cauchy integral should be justifie
Since the integration by parts is needed to transftjrto g'(t), this requires the boundednesgy@fl). To
resolve the problem one can introduce the new demhgijybounded at the ends as follows

_ _ at + bl _u-uw Ut . 2 .2
h(t) = o(t) e a=—o—, b=—o =, w = lim VI t2g(t) (A1)

Let the following integrals be introduced
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O(Z)_T[J.wz_tzt—zdt_ﬁz_lz’ Jl(z)_nj. /|2_t2t—zdt_1 [,2_2 (A2)
o |

Their derivatives can be calculated by applying the residual theorem as follows

2 2,12 )
Jb(ZﬁW, Ji(2)=(zlw, Ja(z):—ﬁ. Ji’(Zhﬁ »3)

zc -1 yalel! zc -1 yalel

Then with the account for Eqn (A1)-(A3) and integrating by parts, the normal derivafiveakés the form

,_ 1 eln()+h()  (t-2)h(HT (3a+a)l+(d+b)z z-—z3zla+(222+|2)b
Y om B T (=22 %’t_ 2(22_|2)3/2 2 (Zz_|2)5/2 (Ad)

With the use of the Sokhotski-Plemelj formulae for the first integrand and its generalisation (eg., [4]) for tF
second integrand one can obtain the following boundary value of

e (R 1 3 +n() i (3a+a)l+(D+b)x
Dy () = [ it (22 (A9
=

where the branch chosen for the complex-valued square root funofim?n—isl2 = ii\/l 2_x2 if - xi0.
Returning in Eqn A6 to the densijft) by Eqn Al one obtains

ey L300+ g(¥ 3g()+g() 1 p(3a+a)l+(D+Dd)t
D (X)—iT ZHJ-TCH-FETJ- (|2_t2)3/2( 9 dt (A6)

- =
It can be proved that the last integral here vanishes. First the following integral of the Cauchy type can
evaluated by applying the residual theorem.

3a+a|+ (p+D)t  _(A+a)l+(D+b)t
A7
tht (A7)

) d Jz2 —Iz(zz—la

From Eqgn A7 it follows that*(x)+1(x)=0. The last integral in Eqn A7 is the sum of the boundary values
presented by Eqn 8, hence it vanishes. Finally, the boundary value of the normal derivative of theDunctior
assumes the standard form shown in the main text by Eqn 17.



