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ABSTRACT

The 2D elasticity problem on a curvilinear crack with the partial frictional contact of its surfaces was solve
by the developed numerical method using the singular integral equations of the problem. The crack lir
equilibrium was analyzed taking into account formation of zones of the crack surfaces opening and clost
slip and stick. The boundaries of these zones were searched for during the problem solving. An influence
the loading trajectory in case of bi-axial loading was illustrated.

INTRODUCTION

Deformation and fracture processes of structural elements and natural objects with cracks are of
accompanied by an interaction of the crack surfaces with friction. The crack surfaces contact can be cat
by the features of the external loading, crack geometry and combination of material properties (e.g., in c
of interface cracks). For instance, contact zones occur near the ends of a circular are crack in an elastic
under the action of uniaxial tension in the direction of the arc axis of symmetry if the arc angle is about 21!

The contact of the crack surfaces leads to the redistribution of the stress and displacement fields near
crack and can change the conditions of its limit equilibrium and growth regimes. The loading history
important in case of the crack surfaces interaction especially in case of their friction contact. From t
mathematical point of view the problem complexity and nonlinearity is related to the necessity to exami
formation and evolution of zones of the crack surfaces opening and contact, slip and stick having unkno
boundaries.

Note, that the 3D problems on the cracks with contact zones of their surfaces were analyzed in [1-3]. The
problems on the rectilinear and arc-wise cracks with frictional contact were considered in [4-6] and [7,
respectively. The limit cases of a smooth contact and full stick along an arbitrary curvilinear crack we
studied in [9].

MODELLING OF A CURVILINEAR CRACK WITH THE PARTIAL
FRICTIONAL CONTACT OF ITS SURFACES

Statement of the boundary value problem
Let us consider an isotropic elastic plane with a curvilinear crack L. Assume that the crack surfaces ¢
interact with friction such that the crack opening occurs at a paof the crack, while part of the crack

surfaces contactceL\L consists of the zonds, and Lg; of their slip and stick, respectively. The boundary
conditions at the crack L and additional conditions in the contact zone are the following

N +iT SN +iT, (U —u)*i(v' —v)=0, tOL; (1)

Vo TV, S0, TE=p N[, tOL; (2




N*+iT*=0, tOL,; 3)
N*<0, tOL,, wu|N*|>|T*|, tOL (4)

where t is the parameter along the crack, values related to the left and right crack surfaces relative to
direction of t increasing marked by the signsespectively, N and T are the normal and shear stresses
prescribed at the crack surfacesand vV are the components of the crack surfaces displacements relative tc
the Cartesian coordinate system,= y(v; —v;)/ vi-v |, vy and v; are the normal and shear

displacement componentsjs the Coulomb friction coefficient/i = -1.

Basic equations

The derivative of the jumps of displacement components along the crack can be represented through
functions g'(t) = ¢!, + ' (t) where ¢, (t) =2GL+ k) '[v,]t., ¢, () =-2iG(1+K)[v, ]t,, [V, 1=V -V,
[v.]=v -v_, t. =dt/ds, s is the are lengtik=3-4v in plane strain and=(3-v)/(1+v) in plane stress, G
are the Poisson ratio and shear modulus of the material.

Denote byA, = (G, f), r=1,..., Npp, Lo =0 (&) and byAq = (&, by), d = 1,2,..., Ny, Lo O L, = O (Ag) the

intervals where the opening and mutual shear of the crack surfaces occur, respectively.

Further, the displacements and stresses have no jumps along the stick zone. Then by incorporating bour
conditions given by Eqns (2), (3) and integral representations of the complex potentials (see, e.g. [10])
obtain the system of (MNsy) singular integral equations relative to the functiopis(t),tCJA, and

Qt)=0, t'0OL;; ImQ(t)=pReQ(t), t'OL.. (5)
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+5TL, v dt+kl(t,t)¢r(t)dt+kz(t,t)¢r(t)dtHpo(t)

where g (t) = - Np — iTo, Np and T are the stresses caused by the external loads in the continuous plane
the crack line, the regular kernels are equal to

—

, d, t-t ] dt-t'
kl(t,t)zglnﬁ ) kz(t,t) =-W__f' . (7)

—+|

The system of integral equations (Eqns (5)) has a unique solution in the class of functions unbounded in
ends of the integration interval if the conditions of the displacement components single-valuedness at
circuit of the contourd, andAyy, respectively are satisfied

[0,00dt=0, r=1,2. N [¢,(Odt=0, d=1,2... 0 (8)
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and the equalities following from the definition of the functidné), ¢.(t) because of the displacement
reality

imfo, @)(crds] =0, Reo, ((dvds)=0. 9)

The system Eqns (5) can be rewritten as follows



ReQ(t)=0, t'OL,; (10)
ImQ(t) =p|ReQ(t)|, tOL, OL,. (11)

Algorithm of searching for unknown boundaries

An iterative algorithm was developed for sequential searching for the zones of the crack surface opening
contact, their slip and stick as well as the normal and shear components of the crack surface displacem:
The algorithm is based on the property of the displacement jumps continuity on the crack at small variatic
of the loads and the boundaries of the zones of the crack opening and relative shear of the crack surface:
As a result small variations of these boundaries lead to small variations of the displacement field.

The initial approximation of the zone boundarigg b?), (@,{©) is constructed according to conditions

given by Eqgns (4) at the loads N 5,N = T,. Further, the stress intensity factors (SIF) at the ends of the
crack opening zones and zones of the relative shear of the crack surfaces are calculated on the basis ¢
solution of the problem given by Eqns (10), (11) with additional conditions on the displacement (Eqns (&

(9)) [9]

(12)
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where the signg correspond to the right and left edges of the appropriate zones along the direction
increasing the parameter t. Generafyj” # 0 and| k2 © |> 0.

Note, that the zones of crack opening and relative shear displacement of its surfaces can not have com
end points with the exception of the case when the opening zone borders on one of the crack ends. Ind
the opening zone is always contained in the zone of relative shear displacement of the crack surfa
However, the relative shear zone can exist without an inner opening zone [1,3]. Taking in mind this prope
one can show that the common points of the opening and stick zones can not occur along the smc
curvilinear crack. Further, the sign of the normal stresses is determined by the main term of their asympto
near the edges of the opening zone [7,8k:t? >0, then the appropriate edge of the opening zone is shifted

on a small valué; to the adjacent contact zone, and it is shifted in the opposite directionkifieno. As

a result of using this algorithm we obtain the solution nonsingular at the ends of the opening zone. Simila
singular shear stresses near the edges of the slip zone will always lead to the relative shear of the c
surfaces [7,8]. Hence, the edges of the slip zone should be shifted on a smad valtlee slip direction
according to the property of continuous variation of the shear displacement jump at a small variation of t
slip zone boundaries [3]. The inequali|ty§(‘*l> < k§“’| (where i is the iteration member) needs to be

fulfilled for the adequate variation of these boundaries. Thus, the problem given Eqns (8), (9), (10), (11)
solved on the i-th iteration. Then the values of the SIFs are calculated at the edges of thg? zines
«,0) and the new locations of these boundaries are searchedfosi=), ( t¢v). The process is

finished when the SIFs at the boundaries of the opening and slip zones (which do not coincide with the cr:
edges) become to be equal to zero within the given accuracy.

Numerical method

The method of mechanical quadratures based on the polynomial interpolation formulae and quadrat
formulae for singular integrals [1-3] was used for the numerical solving of the system of singular integr
equations.

Taking in mind that the derivative of the displacement jump has the square root singularity while the integ
eguations contain the Cauchy singular kernels one can use the Gauss quadrature formulae

o f@Edk “f(z) () Y2 (M) fﬁ)dﬁ Zf(i) (13)
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where U, (n) :Sin(narcc0$])/1/1—r]2 is the Chebyshev polynomial of the second kind and the value®
equal to the roots of the Chebyshev polynomials of the first Kipgf) =cosarccost) such that
& =cos[m(2k-1)/2n] (k =1, 2, ..., n). As a result the system of the integral equations is reduced to th

system of algebraic ones relative to the values of unknown functions in the discrete set dfxpadinés
Lagrange interpolational polynomial

f®=1 Z(—l)“f E)T.EOVI-€ [E-5,) (14)

was used to construct the unknown functions through their values in the&points

The feature of the used method suggested in [4] consists in independent quantization with respect
variablest andn while usually the roots of the Chebyshev polynomials of the second kind are chosen as
n=nm(m=1, 2, ..., n-1). In our method quantization with respentwas performed on the sets related to
the domain of definition of the functiords, (t) and. (t). Such representation enables us to characterize
independently opening and shear of the crack surfaces in each of the zones where these rele
displacements occur.

Numerical results

As the examples let us consider the results of the numerical calculations for the parabolic or elliptic arc-w
cracks in plane under the biaxial loading by the loads p an&@ ¢»0) such that the components p is
inclined at the angle to the axis x. The parabolic and elliptic arcs parameterization was written as follows
=w (&) = ) [E+ie (§2— 1)] andw (§) = » [28 - ie (1 -EA)/(1 + &), € characterizes the crack curvature. The
crack ends are located in the pointg, ( 0). The calculated dependencies of the @LF/ q\/X) and length of

the opening zone (5, where $; is the crack length on the ratio (p/gq)at 0 are given in Figs 1, 3 and 2,

4 respectively, for the parabolic and elliptic arc-wise crack. The curves (1), (2), (3) are related to the valt
of the friction coefficienu = 0; 0.2; 0.4. The SIF dependencies on the parameter given foe = 1 (curve

(@)); 1.5 (b); 2 (c). For the parabolic crack (Fig. 2) the length of the opening zone monotonically decrea:
with growth of the friction coefficient for ali. The length of each of the contact zones equats & —

S)/2. The relative length of the zone of the mutual shear displacements of the crack sugff&gs=S
0.958 afu = 0.4,e = 2,|p/q = 8.

k. /gyl
20

1 3c ,
00 11p/q]
0 @ 5

Figure 1: SIF of the shear stress for the parabolic arc-wise crack

Comparing Figs 1 and 3 one can conclude that the orientation of the crack ends essentially changes the
of the SIF dependencies on the applied loads (e.g., the fungtfpfgkbecomes strongly nonlinear).
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Figure 2: Relative length of the opening zone for the parabolic arc-wise crack
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Figure 3: SIF of the shear stress for the elliptic arc-wise crack
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Further, the stick zones are formed near the ends of elliptic arc-wise crack {p/g>ad € = 1). Opposite

to the case of the parabolic crack, small contact zones occur near the ends of the elliptic one at p=0.
dependence of the relative length of the relative shear of the elliptic arc crack surfag&Rg (B the
loading parametelip/q| is given in Fig. 5. It was aforementioned that the stick zones of §H&S- S)/2
occur near the crack ends. The length of the stick zone increases with growth of the p{péneter

If the solution of the boundary value problem and unknown opening, slip and stick zones were searched
one can analyze the crack limit equilibrium using known criteria. For instance, in the aforeconsidere
examples of cracks and bi-axial loading only the SIE K. Hence, one can assume that in these cases the
limit equilibrium of the cracks can be evaluated according to the critégjonk ., where k. is the fracture

toughness relative to the transverse shear.

Close to linear monotone, kncreasing with increasing the loading paramééy is observed for the
parabolic arc-wise crack at small values of the curvature and friction coefficient (Fig. 1). The opposite effe
of the SIF k decreasing withp/q| increasing occurs at the increasing of the curvature and friction coefficient
since the crack surfaces slipping is decelerated by growing friction. Hence, in this case the growth of
loading parameter will not lead to attaining the crack limit equilibrium.
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Figure 4: Relative length of the opening zone for the elliptic arc-wise crack
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Figure 5: Relative length of the zone of relative shear displacements for the elliptic arc-wise crack

Monotone k increasing and decreasing wigiq| increasing are observed for the elliptic arc-wise crack in
absence of friction (ande) and at the friction coefficient = 0.4, respectively (Fig. 3). On the other hand,
nonmonotone dependence(jp/q)) is appropriate to the intermediate values of the friction coefficient, e.g. at
M=0.2.

The results of calculations demonstrate the complex nature of the friction and shear loading influence on
possible regimes of attaining the crack limit equilibrium.
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