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ABSTRACT

According to the so-called critical plane approach, the plane where the fatigue failure assessment shoulc
performed is determined by maximising the amplitudes and/or values of some stress components. In the pre
paper, the critical plane orientation is proposed to be correlated with the averaged principal stress directi
deduced through the weight function method. Then the fatigue failure assessment is performed by conside
a function of the stress components acting on the critical plane. The results derived by applying this criterior
some other critical plane criteria commonly used are compared with experimental data related to different bri
(hard) metals under in-phase or out-of-phase sinusoidal biaxial normal and shear stress states.

INTRODUCTION

Several criteria developed during the last decades to predict whether fatigue failure under multiaxial loading r
occur or notare generally aimed at reducing a given multiaxial stress state to an equivalent uniaxial stre
condition (e.g. see review in R¢L]). Some of these criteria are based on the so-called criticalggpreach,
according to which the fatigue failure assessment is performed in a plane where the amplitude or the valu
some stress components or a combination of them attains its maximum [2-5]. Alternatively, the position of 1
critical plane may be correlated with that of the principal stress directions, but, since such directions under fati
loading are generally time-varying, averaged principal stress directions should be considered [6-8].

In the following, a new criterion is proposed which correlates the critical plane orientation with the mean princiy
stress directions determined through the weight function method. Then the fatigue failure assessmer
performedby considering a quadratic functiohthe shear amplitudendthe maximum normal stressting on
the critical plane. Finally, such  criterion is appliedo some experimental tests brittle (hard) metalander
in-phase or out-of-phase sinusoidal biaxial normal and shear stress states. For these materials, the ratio be
the endurance limit under fully reversed torsion and that under fully reversed bending falls within the followir

range :1/43 < Taf [ Oaf < L.

FATIGUE CRITERIA BASED ON THE CRITICAL PLANE APPROACH

Let us consider the plane stress condition of biaxial normal and shear stresses at the generic point P
cylindrical body (Figure 1a) subjected to synchronous out-of-phase sinusoidal loading :



Oxx = 0t(t) = o4 SIN(0t —a) + oy
oy =01(t)= 014 sin(wt) + o m (1)

oxy = 7(t) = 75 sin(wt - B) + 7n

where the subscriptsl, a andm standfor tangential (circumferentialpngitudinal, amplitude and mean value,
respectively, while the othebnmponents of the stress tensor are equal to zero.

An elementary material plae passing through point P, and two orthogonal unit veatioagdv, on this plane
are considered (Figure 1b). Let us assume the direction of the vearsahe intersection betwearand the
plane defined by the normal vecterand the Z-axis, so thaPuvw forms a right-hand orthogonal coordinate
system. The direction cosines of the w-axis can be computed, with respect to the filaK¥¢Zas a function
of two angles,p and 3, in a sphericaloordinatesystem (0¥ ¢ <360° 0°< 3 <180°) :l,=sin3 cosp, m,
=sing sing, ny = cosy (Figure 1b). Furthermore, the direction cosines of the u- and v-axis are elgual to
cosy cosp, my, = cosy sing, ny =-sind andl,=- sing, m,=cosop, n,=0, respectively.
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Figure 1. (a) PXYZ coordinate systenth) Puvw coordinate system, with the w-axis normal to the plane

The stress vect@,, acting at point P of the plare(Figure 1b) can be computed if the stress tems®known:

oxx Oxy O|[1, Swx | [sin8 (o, cose + 7 sine)
Sy=0c-w = [SW] =0y Oy Of|Mmy| = [SW] =|Sw,y |=|SinS (a| sSing + TCOS(p) (2)
0 0 O0f[ny Su. 2 0

and the scalar valubl(t) of the normal stress given by
Nt)=w-S, = N@©)=1,S,x + My S,y + NS,z = sin®9 [at cos’ ®+0 sinch +7 Sin2(p} (3)

The mean valueN ,, and the amplitudeN, of N(t) can be determined by substituting the stress components
(Egns 1) into Eqn 3 [8].

By recalling Eqn 2, the shear stresstorC lying ontheplaneA is computed :



C:X
C=S,-N=S, -(w-sy)w= [c]=|c,|=
C

z

sind [COS([) [at cos? § + (at —- 0 )sin28 sinchj +7 sing [1— 2sin29 cos? (pﬂ (4)
sing [Sin(p [a| cos 9 + (a| — Ot ) sin%9 cos’ (pj + 7 COSp [1— 2sin%9 sinchﬂ

—sin®g cos$ [at cos ®+ o) sinch +7 sin2(pj

The direction of the shear stress ve&ds generally time-varying and, therefore, the definition of the amplitude
and mean value of this vector is a complex problem. Papadopoulos [9] has recently proposed to examine
components o€ along the u- and v-axis. By recalling Eqns 1 and 4, such components can be written in tl
following form :

C, = f sin(et) + g codwt) + C

(5)
C, = psin(et) + qcodwt) + C,

whereC, ,, andC, , are the mean values of the componen( albng the u- and v-axishereas thiinctions

f, g, p andg depend on the phase anglesand g, and the orientation angles and9, of the plane\ [8]. Eqns
5 are thgparametric equations of the ellipse described by the tip of the shear stres€\attbe plané during
a loading cycle. This ellipse is centred at polQyt (,;C,, ), and its semi-axes are funciond,af, p andg. The

mean valueC,, of the shear stre€sis equal to,/Clim + C\%m , Whereas the amplitude Gfcoincides with the

major semi-axisC, of such an ellipse.

The analytical stress components determined above can be used to apply common fatigue failure criteria b
on the critical plane approach to the case of a sinusoidal biaxial normal and shear stress state. Accordingly
fatigue failure assessment is performed in two steps. Firstly, the critical plane is determined by maximising
amplitudes and/or values of some stress components. For example, the criteria proposed by Findley [2], Ma
[4] and McDiarmid [5] can be expressed as follows :

(0c.9¢):  max{Cal0.8) + ANmaxl.9)} 6)
(0.8

where the maximum valull of the normal stresBl(t) is equal to the sum of its mean value and amplitude,

max
i.e. Njax = N, + N5 . Secondly, the fatigue failure assessment is carried out by employing some stre

components acting on the critical plane deduced in the first step :

Ca((pC’SC) + B Nmax((PCagc) < D (7)

where A, B and D are material constants which present a different expression for each criterion mentioned.

A NEW CRITICAL PLANE CRITERION

Orientation of the Fatigue Fracture Plane and the Critical Plane
A theoretical procedure has recently been developed in order to determine the mean principal stress direct
through the weight function method [¢-8At a given time instant, the principal stresggs,withn=1, 2, 3,



are the eigenvalues of the stress tensor at that time instant, whereas the eigenvectors represent the nine pr
direction cosine$,,m,,n,. Let us assume that; > o2 > o3, that is to say, the directions of maximum and

minimum principal stresses are called 1-axis and 3-axis, respectively. The orthogonal coordinatdPdy3em
with origin at point P and axes coincident with the principal stress directions can also be defined through
“principal” Euler anglesg, 8,y (0°< ¢ <360°0°< 6 <180°0°< w <360°). Such Euler angles can be
obtained from the above principal direction cosines, and their ranges at the end of a two-stage proce
proposed in Ref6-8] are reduced as follows : 8% , 6 < 90° and -90% w < 90°, in order to average correctly
the results determined for different time instants.

Now examine the stress tensor consisting of the normal stresé¢s, (t and the shear stres@ gjven in
Egns 1. Since every stress component is time-varying, we can compute the reduced principal Euler an

¢(1),0(t) andw(t )at each time instarit Then the mean directioﬁlsé and 3 of the principal stress axes are
determined by averaging the instantaneous values of the reduced principal Euler angles through approp
weight functionsW(ty ) :

R 1 tN R 1 tN
p =\ 2 PUIWt) 0= 2 At W(t)
ty ty
t t 8)
. 1 N N
v= gy 2 vt W) W= W)
ty ty

whereW represents the summation of the weigh#ét, ), with t, from t; to ty . The following weight function
which accounts for the effect of the maximum principal steegs; is gdopted :

0 it oq(tk) < Coaf
W(t) = O<c=l (9)
My
1) | it 5> coy
O af

the physical meaning of which has been discussed in Refs [6-8]. Not@jhsta coefficient which depends
on the slope of the S-N curve for fully reversed bending.

Several authors have proposed methods to predict the orientation of the plane where a fatigue crack may aj
(fatigue fracture plane). For instance, according to McDiarmid [10], the fracture plane under out-of-pha
sinusoidal bending and torsion coincides with the plane on which the maximum principal stress achieves
greatest value with respect to time. The correlation between the experimental fatigue fracture plane and
averaged principairess directions hagen analysed for hard metals under out-of-phase sinusoidal bending an
torsion [8] and random proportional bending and torsion [11]. On the basis of the test data examined, the nol

to the fracture plane seems to agree with the weighted mean direatibthe. maximum principal stress by
employing the weight function in Eqn 9, as is shown in the following.

Then the correlation between the above weighted mean directamd1the normal wo the critical plane on
which the fatigue failure assessment should be performed (critical plane) is discussed. The following formul:
proposed :

2
T
5 = 452 1Pii} (10)

O af



where$ is the angle, expressed in degrees, betv@eandlw . This angle is equal to 0° farys / Oaf = 1

(extremely hard metals), whereas it is equal to 45%§@r/ oaf = 1 / \/5 (threshold value between hard and

mild metals). As a consequence of the above assumpti@h and the conclusion drawn at the end of the
previous paragraph, the critical plane is close to the fatigue fracture plane for very brittle materials, while the t
planes form an angle equal to about 451faterials with the endurance limit ratie,s / o 4¢ , tending to the

brittle-ductile threshold value.

Fatigue Failure Assessment
The fatigue failure assessment can be carried out through a quadratic combination of the maximum normal s
(Nhax= N+ Ny ) and the shear stress amplitudg, §, acting on the critical plane :

max—
2 c 2
N
—max ) 4l =2 <1 (11)
O af Taf
This inequality takes into account some established experimental findings. First of all, as was observed by Gc
et al. [12], the mean shear str&3g does not affect the fatigue life of the test specimens. Moreover, a tensile

mean normal stressl,, strongly reduces the fatigue resistance of metals, while a comprégsjveas a
beneficial effect. The fatigue criterion of Eqn. 11 corresponds to an equivalent stress amplifdéeo be
compared with the fatigue limé s :

2
O af
Oeq = Nmax2 + (_J Ca2 S Oaf (12)

APPLICATIONS

The present fatigue criterion is applied to some experimental results related to synchronous in-phase or ou
phase sinusoidal loading for round bars under bending and torsion [13]. Nishihara and Kawamoto emplo
specimens of different materials, such as mild steel withe.C5content and grey cast iron with 3¥87TC
content. Some mechanical properties of the mild steel are as follgwsuitimate tensile strength = 704.1 MPa,

oar = 313.9 MPagzy = 196.2 MPam, = 8.7, while those of the grey cast iron atg = 230.0 MPagy = 96.1

MPa, zs = 91.2 MPam, = 19.4. Note that, on the basis of the values of the rgfip o 5 , the former material

analysed is close to the the brittle-ductile threshold, while the latter is very brittle.

The phase angl@ (Eqns 1) is equal to 0° (in-phase) or 60°, 90° (out-of-phase), and the mean stresses are e

to zero; different values of tramplituderatio (t./c1 ) have beeexamined (Tables 1 and 2). It needs to be
underlined that all these loading cases correspond to the limit state of non-fracture of the specimens for a c
number of the order of one million.

First of all, the experimental fatigue fracture plane orientation is compared with the theoretical predictions of t
present criterion. The experimental fatigue fracture plane is described by thgeapdietween the normal to

the cracked plane and the longitudinal axis-@xis in Figure 1a, with \Yparallel to Y) of the specimen, while

the theoretical anglej., . between the ¥ axis and the weighted mean directiomflthe maximum principal

stress, is calculated by assuming thattedficientc into Eqn 9 is equal 1@.5 (Tables 1 and 2). The evaluation
of the fracture plane orientation according to McDiarmid [10] is also reported, whgris the angle between

the Y, - axis and the normal to the plane on which the maximum principal stress achieves its greatest value \



respect to time. The predictions through the criterion of the present authors are generally satisfactory, espet
in the case of low values of the phase angle

TABLE 1
EXPERIMENTAL AND THEORETICAL FATIGUE FRACTURE PLANE ORIENTATION 77, AND ERROR INDEX, |, FOR MILD
STEEL SPECIMENS13]
Test o2 w wloa p Fracture plane Error Index, 1%)
No. (MPa) (MPa) () | Exp. PresentMcDiarmid| present  Findley  Matake McDiarmid
Hexp ) 7ca () eal (°)
1 1943 0.0 0.0 0 0 0 0 -18 -17 -17 -20
2 2453 00 0.0 0 0 0 0 4 4 4 1
3 2356 489 0.2 0 12 12 11 7 7 6 4
4 1873 936 05 0 22 23 23 5 8 8 5
5 1013 1223 1.2 0 30 34 34 -1 2 2 1
6 0.0 166.8 0 8 45 45 21 21 21 21
7 0.0 1423 0 45 45 45 4 4 4 4
8 2011 1006 0.5 60 8 18 17 7 7 1 -2
9 1942 971 05 60 12 18 17 3 4 -3 1
10 1052 1268 1.2 60 22 35 35 1 5 -1 -2
11 1089 1315 1.2 60 8 35 35 5 9 2 1
12 2448 507 02 90 0 0 0 6 5 5 2
13 2356 489 02 90 0 0 0 2 1 1 -2
14 2358 1179 05 90 8 8 0 18 13 * -1
15 2081 1041 05 90 8 8 0 4 0 * -4
16 1126 136.0 1.2 90 39 39 39 9 11 -1 -1
17 1164 1405 12 90 8 39 39 13 15 2 2
* The critical plane is undetermined
TABLE 2

EXPERIMENTAL AND THEORETICAL FATIGUE FRACTURE PLANE ORIENTATION 77, AND ERROR INDEX, |, FOR GREY
CAST IRON SPECIMEN$13]

Test oa w wloa pB Fracture plane Error Index, (%)
No. (MPa) (MPa) ) | Exp. PresentMcDiarmid| present  Findley  Matake McDiarmid
Hexp ) 7ca () eal (°)
1 103.0 0.0 0.0 0 0 0 0 7 7 7 -32
2 93.2 0.0 0.0 0 0 0 0 -4 -3 -3 -39
3 95.2 19.7 0.2 0 12 12 11 3 3 1 -33
4 83.4 416 0.5 0 25 23 23 4 6 6 -26
5 56.3 68.0 1.2 0 34 34 34 5 8 5 -13
6 0.0 981 w 0 45 45 45 2 8 8 8
7 00 942 w 0 49 45 45 -2 3 3 3
8 93.7 46.9 0.5 60 16 18 17 12 17 4 -22
9 67.6 81.6 1.2 60 33 35 35 17 23 6 -4
10 99.6 20.6 0.2 90 0 0 0 5 8 8 -34
11 104.2 21.6 0.2 90 0 0 0 10 13 13 -31
12 97.1 48.6 0.5 90 0 8 0 14 19 * -26
13 75.1 90.6 1.2 90 38 39 39 16 23 -1 -1
14 71.3 86.1 1.2 90 37 39 39 11 17 -6 -6

* The critical plane is undetermined



Now the critical plane criterion previously discussed and those of other authors are applied to the experime
tests reported in Ref. [13]. The present criterion (Eqgn 11) suggests that, by plotting the shear stress ampli
C, against the maximum normal streldg, ., acting on the critical plane, fatigue failure occurs for the points

with coordinates N5, C5) which lie out of the ellipse with semi-axes equabtg andz ; .

Figures 2 and 3 show a good correlation between this theoretical ellipse (continuous line) and the test res
related to the failure limit state, since most of the experimental points fall very close to such an ellipse, betw:
two dashedurves representing an error+df0% (determined as is discussed below). Furthernmaaly all

the predictions are conservative because the test points lie out of the safety domain.
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Figure 2: Shear stress amplitude vs maximum normal stress acting on the critical plane: theoretical
predictions and experimental results for mild steel specimens [13]

If the left- and right-hand sides of the inequality expressing a given critical plane criterion (Eqn 7) are equal
each other for a certain test, the criterion exactly predicts the result of such a test (as mentioned before, al
experimental cases considered correspond to the non-fracture limit state). Therefore, the deviation betw
theoretical and experimental results can be expressed by an errdr, ieined as the relative difference (with
respect to the right hand side) between the left and right hand sides of the inequality in Eqn 7. In the case o
criterion herein proposed, the error index is equabt@-(ox) / oar (S€€ Eqn 12).

The last four columns of Tables 1 and 2 show the values of the error index for the present criterion and for tt
of Findley [2], Matake [4] and McDiarmid [5]. Note that a positive valud akpresents a conservative
prediction. It can be observed that, for all the different criteria, the error is very low, except a few cases, al
independent of5 .

CONCLUSIONS

A theoretical procedure has been developed to determine the avamagpal stress axes by employing the

weight function method. The weighted mean direction of the maximum principal stress has been used botl
predict the orientation of the fatigue fracture plane and to deduce the critical plane where the fatigue failt
assessment should be performed. Themitexrion based on the maximum normal stress and the shear stres



amplitude acting on the critical plane has been presented to carry out such an assessment.

The criterion herein proposed and other critical plane criteria commonly used have been applied to sc
experimental tests on brittle (hard) metals under in-phase or out-of-phase sinusoidal biaxial normal and sk
stress states. The normal to the experimental fracture plane agrees with the weighted mean direction o
maximum principal stress, particularly in the case of low values of the phase angle between the applied lo:
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Figure 3: Shear stress amplitude vs maximum normal stress acting on the critical plane: theoretical
predictions and experimental results for for grey cast iron specimens [13].

Furthermore, the predictions based on the present fatigue failure assessment arecgeserafliyive, and agree
with theexperimentatesults quite well.
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