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ABSTRACT

The propagation or non-propagation of fatigue cracks from small notches is analysed in terms of a
recently developed microstructural model which accounts for interactions between cracks and material
barriers (such as, for example, grain boundaries) and which also incorporates the effect of the notch
stress gradient. The term “small notches” refers here to stress concentration features whose size is of
the same order as the characteristic microstructural size of the material. Typical examples of these
small notches are pores, inclusions, pits and superficial scratches. Quantitative predictions for the
fatigue limit are compared with experimental data reported in the literature for specimens of different
materials containing small artificial defects.

INTRODUCTION

It is now well established that the fatigue strength of metallic materials is governed by the resistance
to crack growth offered by microstructural barriers, e.g. grain boundaries, phase limits, precipitates,
etc., present in the material. Experimental evidence shows that the conventional fatigue limit in plain
specimens is not the critical stress under which cracks do not appear, but, rather, the threshold stress
below which incipient cracks are unable to overcome the first few microstructural barriers and, thus,
stop propagating [1, 2]. Small material and manufacturing defects, such as pores, inclusions, pits and
superficial scratches, are usually found in engineering components. The presence of these defects could
help early cracks to overcome the first significant barriers and could, therefore, result in a reduction
of the fatigue properties of the component. The effects of this type of defects may be analyzed by
considering them as a particular case of notches the typical size of which is of the same order as the
characteristic microstructural size of the material.

The experimental findings of a number of investigations on the significance of defects and small artificial
notches (drilled holes) in the fatigue strength of materials might be summarized in four points. (1)
Defects below a certain critical size do not affect the fatigue limit of the material (non-damaging
notches) [3–6].(2) This critical size of defects shows a strong dependence on the static strength of the
material. In the case of steels, for instance, sizes of non-damaning notches in high strength steels are



(3) For a particular material, the critical size seems to be generally smaller than the maximum non-
propagating crack length observed at the fatigue limit in “defect-free” specimens [3–6]. (4) Cracks are
always observed at the edges of the hole even at stresses well bellow the fatigue limit of the specimen;
under stress levels less or equal the fatigue limit of the notched specimen, cracks propagate for a small
distance and then arrest [3, 4].

The aim of the present paper is to show the ability of a recently developed model, based on Mi-
crostructural Fracture Mechanics concepts, to describe the fatigue behaviour of materials containing
small notches or defects. The present model provides a micro-mechanical description of the fatigue
crack propagation threshold conditions at notches which accounts for the interaction of the crack with
material barriers (e.g. grain boundaries) and the effect of the stress gradient associated with the notch.

DESCRIPTION OF THE MODEL

Let us consider a crack growing from an elliptical notch in a semi-infinite body and interacting with the
microstructure. Figure 1 depicts such a crack. The plastic zone of the crack is blocked at an internal
microstructural barrier. From the small fatigue crack growth model for plain specimens developed
by Navarro and de los Rios [8–10], the crack propagation process may be rationalized as follows. It is
assumed that the crack tip plastic zone advances in jumps, that is, it is blocked at a barrier and remains
blocked until the “pressure” that the crack exerts upon the barrier is high enough to activate plastic
slip beyond the barrier. Once this happens, the plastic zone spreads to the next barrier, where is is
blocked again and then the process is repeated. This is the way in which the crack is able to overcome
the microstructural barriers.

β α

i1 3

b arr ie r
plastic  zo ne

crack

Figure 1: Schematic representation of the crack in a notched specimen.

The crucial factor differentiating the notched case from the plain one is that the pressure that the
crack exercises upon the barrier can vary considerably from one barrier to the next due to the stress
gradient associated with the notch. Thus, depending on the severity of this gradient and the level of
applied stress, it might be possible for the crack to overcome the first few barriers, but, because of the
decreasing stress field, it might be unable to overcome the following ones. If this were the case, the
crack would become non-propagating. See [11, 13] for a more detailed description.

Using continuous distributions of infinitesimal dislocations and conformal mapping techniques, it is
possible to find analytical solutions for a crack growing through the microstructure at the base of an
elliptical notch in the simplest case of antiplane stress [11, 12]. In particular, it is possible to obtain a
simple expression for the threshold stress τN

Li required for a crack to overcome a generic microstructural
barrier in the material at a distance iD/2 from the notch root [11, 13], which is given by
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dimensional depth and width of the notch, and D is the characteristic microstructural size (e.g. the
grain size or the mean free-path between barriers). τFL is the fatigue limit of the material, which
may be interpreted as the minimum applied stress level below which cracks are unable to propagate
beyond the first significant microstructural barrier. Finally, the term (m∗

i /m
∗
1) represents the effective

strength of the i-th barrier. This refers here to the resistance opposed by the material to plastic slip
activation beyond a certain microstructural barrier. Thus, it is assumed that the term (m∗

i /m
∗
1) stems

mainly from two facts: the crystallographic opposition to plastic slip and the retardation mechanisms
induced in the crack itself, e.g. crack closure. The crystallographic effect comes from the fact that, as
the crack becomes longer, the crack front is forced to grow through a bigger number of grains not all
favorably oriented. On the other hand, closure mechanisms reduce the pressure the cracks exerts upon
the barriers and, so, its effect is simply represented in the model via enhanced values of the barrier
resistance. Both effects lead to a progressive increase in the effective strength of successive barriers,
until it reaches a saturated value for long cracks. As discussed in a previous paper [13], the evolution
of the effective barrier strength may be determined from the well-known Kitagawa-Takahashi (K-T)
diagram, the mathematical representation of which is given in micromechanical terms by the following
equation
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where τLi represents the threshold stress to propagate a crack beyond the i-th barrier in a plain specimen.
A practical expression for the evolution of (m∗
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∗
1) which renders the typical behaviour displayed by

the K-T diagram in metallic materials has been also proposed in [13],
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where ā0(= a0/(D/2)) is the dimensionless expression of the intrinsic crack length a0 locating the typical
knee of the Kitagawa-Takahashi diagram, and which is usually calculated as a0 = 1

π
(Kth∞/Y τFL)2, Kth∞

being the threshold stress intensity factor for long cracks and Y a crack-shape factor. The exponent
f in Eq. 3 controls the speed at which the resistance of the barriers saturates. For metallic materials,
values of f are generally bigger than unity [11, 13].

Equation 1 yields two threshold stresses of practical interest in notch fatigue. On the one hand, the
fatigue crack initiation limit, which, in the micromechanical context presented here, may be interpreted
as the minimum applied stress required to overcome the first microstructural barrier at the notch root.
Thus, the initiation limit τN

L1 is obtained simply making i = 1 in Eq. 1,

τN
L1 =

τFL
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On the other hand, the fatigue crack propagation limit τN
FL, corresponds with the minimum applied

stress which ensures that the crack will be able to propagate across all microstructural barriers and,



simply satisfied by taking the maximum of the succession of threshold stresses given by Eq. 1,

τN
FL = max

i
(τN

Li) i = 1, 3, 5, . . . (5)

As can be seen in [13,14], in the case of notches of practical size, that is, ᾱ >> 1, the present microme-
chanical model gives both qualitative and quantitative predictions highly consistent with experimental
observations.

PREDICTED FATIGUE BEHAVIOUR FOR SMALL NOTCHES

The effect of small notches or defects can be studied using the equations given above for the particular
case where ᾱ is of the order of one or less than one. Two different sizes of elliptical defects are analysed in
this section. The first case represents a defect of the same size than the characteristic microstructural
length and we take ᾱ = 1. The second one corresponds to a defect substantially smaller than the
microstructural size. We have taken a value of ᾱ = 0.1 in this case. To carry out the calculations
reported bellow, the K-T diagram of the defect-free material has been approximated by Eqns. 2 and 3
using ā0 = 15, according to Taylor’s results [15], and f = 2.5 as a representative value for the saturation
rate (see [13]).

1 1 0

1 .0

τ 
  /

 τ
N L

i
F

L

In itia tio n  lim it
F atig u e  lim it

Da2

0 .5

K   =  1 .5 , 3 , 5 , 1 0t

K   =  1 .1t

K   =  1t

α = 0.1

1 1 0 1 0 0 1 0 0 0
0 .1

1 .0
K   = 1t

K   =  1 .1
K   =  1 .5
K   = 3 , 5 , 1 0

t
t

t

τ 
  /

 τ
N L

i
F

L
In itia tio n  lim it
F atig u e  lim it

α = 1

Da2

Figure 2: Threshold stress vs. crack length in specimens with small notches.

Figure 2 depicts the evolution of the threshold stresses given by Eq. 1 as a function of the crack length
and different stress concentration factors (Kt = 1.1, 1.5, 3, 5, 10). Note that Kt equal to unity represents
the defect-free material. It can be seen that the small-notch fatigue limit is only slightly smaller than
fatigue limit of the defect-free material. Differences of only around 10% are found when the defect size
is equal to the microstructural size. Thus, the results above correctly indicate that extremely small
notches, such as superficial scratches or tiny spherical pores, produce no appreciable reduction in fatigue
strength. This was noticed by Heywood [16] as early as 1962 in his classical book when discussing the
incorrect estimates yielded in those cases by the pioneering theories of Neuber and Peterson on notch
sensitivity and which could be of some importance for a correct understanding of surface finish effects
in fatigue. This behaviour also agrees with more recent observations reported by Murakami et al. [3,4].
These authors carried out fatigue tests on specimens containing artificial small holes ranging in diameter
from 40 to 200µm. A variety of material were analysed. For 0.13% and 0.46% carbon steels, having an



70µm and 35µm respectively did not influence the fatigue limit. On the other hand, for 70-30 brass
(grain size ≈ 45µm) and Al 2017-T4 (grain size ≈ 89µm in the transverse direction), it was found that
holes with 40 − 50µm diameters did not reduce appreciably the fatigue limit. Non-propagating cracks
were found even at the edges of the smallest defects in all these experiments. Similar observations have
been also reported by Lukas et al. for small circumferential semi-circular notches in Copper and in a
2.25Cr-1Mo pressure vessel steel [5, 6].
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Figure 3: Initiation and propagation threshold stresses vs. Kt for small notches.

Figure 3 depicts again the results shown in Fig. 2 but in the format of the well-known Frost diagram.
Here, it possible to appreciate clearly the differences between the initiation and propagation threshold
stresses. Two interesting trends may be observed. The first one is that, as the size of the notch
decreases, the initiation and the fatigue limit approach and, as expected, both approach gradually the
fatigue limit of the defect-free material. The second point is that both the initiation and the fatigue
limits are fairly independent of the stress concentration factor. The influence of Kt is only appreciated
at very low Kt values. The reason for this behaviour is that, even at stresses bellow the fatigue limit of
the notched specimen, non-propagating cracks are well out-side the effective notch stress zone [13]. The
smaller the defect, the smaller the effective notch stress zone. This implies that it should be possible
to study the fatigue effect of small notches without going too deep into the estimation of the exact Kt.
For instance, they might be considered to be just small cracks.

This fact has indeed been pointed out by Murakami and colleagues in their works relating to the
evaluation of the fatigue strength of materials containing defects with different shapes [7]. They found
that small defects may be treated as small cracks and proposed relations for the notched fatigue limit
in terms of

√
area of the defect. The area parameter represents the area of the defect projected in

direction of the maximum principal stress. The authors show a good agreement between experimental
results and the predicted fatigue limit in a wide number of materials and type of defects, as long as
there exist non-propagating cracks emanating from the defects.

An important effect which is intrinsically considered by the present model is the influence on the fatigue
threshold conditions of the relative size of the notch as compared with the characteristic microstructural
size of the material . Note that Eq. 1 depends on D via ᾱ and β̄. It follows, for instance, that a defect
of a given size will be much more damaging in a fine-grained material (high ᾱ value) than in a coarse-
grained one (low ᾱ value). This is consistent with the experimental observations, which show that low
strength steels are able to sustain bigger defects than higher strength steels without any substantial



APPLICATION TO EXPERIMENTAL RESULTS

The equations obtained in the model were first developed for the simple case of elliptical notches
under antiplane shear stresses. These equations were later generalized to cover the more practical case
of notches of different shapes and subjected to axial tension. This generalization was based on the
similarity shown by the stress distributions developed around notches of different geometry but which
have the same value for the parameters Kt (stress concentration factor), α (notch size) and ρ (notch
root radius). See [11, 14] for details. An expression for the threshold stresses in a notched specimen
similar to Eq. 1 is obtained, but expressed now as a function of the three parameters mentioned above
and the applied axial stress
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All the expressions used in the model and presented so far are based on solutions for the semi-infinite

body problem. Therefore, the range of practical application of these expressions should be limited to
small notch size / specimen’s net width ratios. Ratios up to 0.2 provide reasonably accurate results as
shown in [11].

Fatigue tests performed by Lukas et al. [5,6] for specimens containing small notches have been analysed
using the present model. The materials studied were electrolytic copper (99.98%Cu, fatigue limit
σFL = 73 MPa, Kth∞ = 2.5 MPa

√
m) and a pressure vessel steel (2.25Cr/1Mo, σFL = 220 MPa,

Kth∞ = 6 MPa
√

m). The grain size for copper specimens was 50µm. For the steel specimens the
mean packet size of bainite was 30µm. Cylindrical specimens of 5 mm diameter with circumferential
semicircular notches of radii ranging from 10 to 800µm were tested under symmetrical loading conditions
(R = −1). Notched specimen data and experimental fatigue limits (amplitudes) are shown in Table 1.

TABLE 1
EXPERIMENTAL AND PREDICTED NOTCHED FATIGUE LIMIT (R = −1).

Material α = ρ Kt σN
FL (Exp.) σN

FL (Pred.)
(mm) (MPa) (MPa)
0.01 3.04 216.5 - 228.5 216.3
0.03 2.99 214 - 228 199

steel 0.05 2.95 196 - 226 187.5
2.25Cr/1Mo 0.07 2.92 160 - 170 176.5

0.20 2.67 135.5 - 145.5 141.2
0.41 2.32 145 - 155 120.8
0.05 2.95 70 - 74 62
0.10 2.87 54 - 58 55.8

Copper 0.15 2.76 45.3 - 49.3 51.6
0.20 2.67 47 - 51 48.5
0.30 2.51 45 - 49 44.2

The authors also determined K-T diagrams for plain specimens in both materials. The experimental
results are shown in Fig. (a). The steel used for this purpose was nominally the same as the steel used in



Figure (a) also shows the fitting of Eqs. 2 and 3, expressed now in term of axial stresses. The values
of exponent f are 2.5 and 1.65 for steel and copper respectively. The estimated crack-shape factor is
about 0.8 in both cases. This is not very different from the theoretical figure of 0.65 that would be
obtained in the case of perfectly semicircular cracks. As a matter of fact, the authors found nearly
semi-circular cracks in those tests [6]. The pattern in notched specimens was slightly different. Cracks
appeared to be of a somewhat distorted semi-circular shape when observed in short portions, but when
longer portions were examined, they revealed an almost uniform depth [6]. It is expected, therefore,
that cracks in notched specimens exhibit an average shape factor a bit higher than in plain specimens.
A shape factor of unity has been assumed in the calculations reported here.
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Figure 4: (a) Kitagawa-Takahashi diagram for 2.25Cr-1Mo steel and Copper. (b) Experimental and
predicted notched fatigue limit.

The fatigue limits predicted using Equation 6 for copper and steel notched specimens are also shown
in Table 1. As it can be seen, the predicted values are in reasonable agreement with their experimental
counterparts. Figure (b) depicts graphically the differences between experiments and predictions. Here,
the experimental fatigue limit corresponds with the mean value of the experimental range. It can be
seen that differences are within, or very close to, an error band about 10% for both steel and copper
specimens.

CONCLUSIONS

The micromechanical description of the fatigue crack growth threshold conditions at notches developed
in the present model, based on the crack interaction with microstructural barriers and the notch stress
gradient effect, provides an appropriated framework to analyse the fatigue behaviour of small notches
or defects in metallic engineering components.

The evolution of the fatigue crack initiation limit and the conventional notch fatigue limit as a
function of the defect size has been obtained. Qualitative predictions agree well with the experimental
evidence reported in the literature. In particular, it has been shown that (1) For applied stresses bellow
the fatigue limit of the specimen, cracks are generated at small notches or defects at a very early stage
and they may be able to overcome just a few microstructural barriers before arresting at one of these
barriers and becoming non-propagating. (2) If the size of the defect is smaller than the characteristic
microstructural size of the material, the fatigue limit is not substantially altered. As expected, the finer
the microstructure (higher ultimate tensile strength) the smaller the size of non-damaging notches. And
(3), the initiation limit and the conventional fatigue limit of a specimen with a small notch are fairly



only at very low Kt values.
Finally, fatigue test performed by Lukas et al. for specimens of copper and 2.25Cr-1Mo pressure ves-

sel steel containing small notches has been analysed using the present model. Quantitative predictions
of the model are in good agreement with the experimental results.
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