ENERGY DISSIPATION RATE AS A FRACTURE ANALYSIS TOOL
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ABSTRACT

The paper presents the case for predicting unstable ductile tearing by the energy dissipation rate appro:
is argued that stable tearing does not arise from an increase in toughness with crack growth (the J
resistance curve). Instead it is proposed that stability is due to the material having an inherent crack gr
dissipation rate, which is present even in small scale yielding (SSY), and which exceeds the energetic ¢
driving force available for crack advance under fixed system displacement or load. Full scaling laws
predict the geometry dependence of the dissipation rate term, D, and the energetic driving force, term:
and G, have still to be developed. However, the trends in these parameters are already clear, an
technology for developing the full scaling laws is available in the form of elastic-plastic finite eleme
analysis. It is shown that J resistance curve instability predictions are potentially unconservative w
extrapolating from a fully yielded test piece to predict the behaviour of a structure in SSY.

INTRODUCTION

In the early days of fracture mechanics there was much interest in energetic methods for describing fra
phenomena. Crack tip characterising methods are now more popular, aided by the increasing pow:
elastic-plastic finite element analysis. The local approach is the logical extension of this trend, bu
abandons the original idea of characterising crack tip stresses by an easily accessible engineering par:
dependent only on remote stress and crack geometry. The nearest approach to a generalised fracture a
tool is provided by the J integral, but this parameter has severe limitations. Most notably, once the c
starts to propagate, the pure definition of the J integral is lost. This means that, leaving aside the speci:
case of cleavage, where cracks are inherently unstable after initiation because of rate effects, any pred
of crack stability based on J analysis must be treated with caution.

This paper outlines the alternative approach to predicting crack stability based on energy dissipation
The method is perfectly general, and can be applied to any material, in any thickness, and at any exte
crack growth. In recent years the chief advocates of the energy dissipation rate approach have been 1
and Kolednik [1], but similar ideas can be traced back to the early 1950s in the work of Irwin and Kies [2

Irwin later abandoned the energy approach and concentrated instead on K as a characterising parame
1961 Kraft, Sullivan and Boyle suggested the K (or G) resistance curve approach [3] as a method to ex
stable tearing and crack stability in contained yield. This was followed in 1979 by the proposal by Paris
that the J resistance curve might be useful to characterise stable tearing in specimens containing exte
plasticity.



Both the G and J resistance curves approaches depend on the idea that cracks are stable because to
increases with crack growth. Shear lip development is often cited, but cui@es for large thin panels,
‘toughness’ continues to increase well after fully slant fracture is established. Also increasinged can

be seen in thick side-grooved specimens, where the fracture is completely flat.

On a microstructural scale it is known that material failure is governed by critical strain as a function
stress state. Many computational crack growth studies have been made which incorporate local fa
criteria, such as the Gurson model [5]. These studies predict increasing ‘toughness’ with crack growtr
terms of J), even though the local failure criterion is invariant with crack growth. It thus appears that
idea of a tearing resistance curve (increasing toughness with crack growth) is inconsistent with phy:
reality.

A major advantage of the energy dissipation rate approach is that it explains stable tearing without the
to postulate an increase in toughness with crack growth.

CRACK STABILITY WITHOUT A CRACK GROWTH RESISTANCE CURVE — THE ENERGY
DISSIPATION RATE APPROACH

In G and J theory the same symbol is used to mean both the toughness and the driving force causing
instability. To avoid the confusion that this can cause, dissipation rate theory uses two separate symbols

1. atoughness (or material energy dissipation rate) term, designated D;
2. an energetic driving force term, designated C.

D represents the rate at which energysdJs dissipated to all sources as a function of crack propagatiot
area (Figure 1).

dUgiss and dA are
A determined
Load by unlqadlng
compliance
D = dUjsddA
>

Displacement

Figure 1: Experimental determination of D

Many authors have attempted to separate a local, material property term, usually designated, doR or

the remote geometry dependent plasticity term. An example of this is provided by the ‘essential worl
fracture’ approach of Cotterell and Reddell [6], which has gained popularity in recent years
characterising the tearing resistance of polymers [7], and sheet metals [8]. Atkins has also used



assumption in deriving scaling laws for elastic-plastic fracture [9]. The present author does not advocate
approach. The term D as used here contains all energy dissipation rate terms, local and remote fror
crack tip. It is acknowledged that D defined in this way will be highly geometry dependent. In order to
D for crack stability predictions it has to be estimated for the particular geometry under consideration u:
scaling laws. The exact form of these scaling laws is not yet confirmed, but some known and suspe
trends will be discussed later.

The definition of a stable crack is one that increases in length only when the remote load or boun
displacement is increased. Conversely, a crack is unstable if it increases in length even when the bou
displacement and load on the structure are held constant.

From the definitions it can be seen that the energy input from the system under fixed load and displace
are vital quantities in discussing crack stability. To clarify this in further discussion three terms are defil
to describe the crack driving force term:

1. the generalised energy input term under increasing load or increasing displacement, designated C;

2. the energy input under fixed load (relevant to crack stability in a structure) desigpated C

3. the energy input under fixed displacement (relevant to crack stability in a laboratory test pie:
designated &

Consider stable growth under load control, and assume for the moment that D is invariant with cr
growth. The energy input, C, must match D by conservation of energy. But if the crack is also to be ste
Cp, must be less than D. In small scale yielding (SSY) it is generally assumed that the linear elastic frac
mechanics (LEFM) term G gives the correct energy input term irrespective of load path. If this is true,
C, = Gy, and stable growth is impossible unless D increases with crack growth. This is the thinking that g
rise to the concept of theg@esistance curve.

The first step in seeing the error in this viewpoint is to accept that very few metals fail without some cr:
tip plasticity. For instance, a critical crack tip failure strain for steel might be 30%. This is not achiev
without the generation of a significant crack tip plastic zone. The plastic zone size can be small compar:
structural dimensions (hence SSY), but its absolute size must be large to achieve 30% strain at the crac
The energy dissipation rate involved in recreating this plastic zone ahead of the advancing crack tip is
given by G. The elastic-plastic energy rate, C, that can be input during a crack growth increment depenc
the compliance change, which in turn depends on the change in plastic zone size. If the load incre
during the crack growth increment, there is a much larger increase in plastic zone size, and hence a
compliance change, than if the load had stayed constant. It thus follows that in an elastic-plastic mate
even one in SSY, C >,C G,

If this is accepted it is immediately apparent why cracks can be stable even when D does not increase
crack length. Consider a cracked structure under load control in SSY. The crack initiates when the cri
crack tip strain is reached. In a tough material, this occurs whénhith to a first approximation is given
by G in SSY) is well below D; so, the crack is stable. Crack growth can nevertheless be achieved u
increasing load because this elevates C to match D. The growth will be stable until a load is reached w
Cp, matches D. At this stage the crack will go unstable as long asrffinues to match or exceed D as the
crack extends. An application of this approach to large aluminium panels is given in [10].

CHARACTERISTICS OF D

Energy dissipation rate can easily be measured by an unloading compliance, or multiple specimen me
of the type standardised for J resistance curve testing (Figure 1). Instead of plotting J against crack gre
dissipated energy, dds is plotted against crack extension area. The energy dissipation rate, D, is the sl
of this line.



There is no validity limit on D in terms of crack extension; but in a specimen with a fully yielded ligamei
D will decrease as the crack extends. The reason for this is that the load is decreasing as the crack ¢
Some normalisation can be achieved by dividing D by the current ligament length. Limited data presente
[11] shows that a normalised quantity,Dyjiven by D/b, where b is the current ligament length, is

reasonably constant for crack growth across the first 50% of the ligament. Normalisation schemes for

terms of specimen limit load are further discussed by Brocks and co-workers in [12,13].

Another feature of D is that it tends to start at a very high value for zero crack growth and subseque
decline [12,13]. There are several ways of understanding why this trend should occur. One explanatic
that the crack is escaping from the initially heavily blunted crack tip region to assume its steady state f
Another way is to reason that, during the initial blunting phase of crack deformation, there is a lot of ene
dissipated for a vanishingly small amount of crack growth. By this reasoning it makes sense that D sh
start at infinity for zero crack growth. A final link which can be made is with the shape ¢f ¢hevé. This
starts off steep, and then flattens with further growth. Because of their relative definitions Rx/dadadd
linked approximately by the expression:

D= g% (1)

where b is the current ligament length ang the normal constant used for J determination. Hence, if the
slope of the J resistance curve starts off high, D will also be high. Brocks and Siegmund [14] show
example of a dissipation rate curve for aluminium where D initially increases with crack growth. This tre
is unusual, but is occasionally seen in materials which have a dramatic change from flat to shear fractu
the crack grows.

A key question is: ‘What happens to energy dissipation rate in SSY?’. Evidence on this is incomplete, b
should first be re-emphasised that, unless the material is intrinsically brittle, i.e. it has a failure strain wi
is close to the elastic yield strain, D does not reduce; tm SSY. Consider the trend of plasticity with
increasing specimen size as the initial ligament length is increased. In a tough material there will be a r
of ligament sizes over which the ligament will continue to be fully yielded. This will cause D to increa
with specimen size. Eventually a specimen size will be reached where the crack begins to propagate &
the ligament is fully yielded. Then, if the size increases still further, the crack will begin to propagate
lower and lower global stress levels. Eventually the crack will initiate and propagate with a plastic zone
equal to the Irwin SSY plastic zone sizg;. R

After that point the plastic zone cannot get any smaller. An intuitive argument based on dimensic
analysis is to say that the dissipation rate in small scale yielding can then be obtained in the following w:

1. determine the dissipation rate for the material in a small fully yielded bend specimen,;
2. obtain the normalised dissipation rate, D*, as D/b where b is the current ligament length;
3. estimate the energy dissipation ratgs,dor the structure in SSY as:
D, =D*R, 2)

By inserting the expression for the Irwin plastic zone size at crack initiation, and rearranging:

Dssy _ D*E
J nnt

3)

Where: Jis the J integral at crack initiation (5 {8 SSY); E is Young's Modulus; and n is the constant in

the Irwin plastic zone expression (= 1 in plane stress, = 3 in plane strain). This expression was giver
name Crack Stability Index (CSI) in [11]. It is a material specific margin of safety against unstable teari
For a very brittle material, with a crack tip strain to failure near the yield strain, the CSI will be 1 (Griffi



material). However, for more typical structural materials, the CSl is likely to be in the region of 5 to 20, |
there is a large margin of safety against unstable tearing even in SSY.

The CSI as defined by (3) is identical to the rétit I, used by Tvergaard and Hutchinson (T&H) [15].
However, T&H incorrectly associate with G at all stages of crack growth, and hence end up with curve
which look like conventional G or K resistance curves. In reality, there is only equality betweer Boand
steady state crack growth. At this point, the crack is extending under constant applied G, and there has
equality between all the terms 3> and Qs Up to this point crack growth has required increasing G,
and, for reasons explained earlier, G underestimates D while the load is rising and the plastic zone si
increasing during the crack increment. It would be possible to determine D as a function of crack exten
from computations of the type performed by T&H by considering changes in internal plastic energy,
results of this type have yet to appear in the published literature.

Boothman and Luxmoore performed some computationssgff@ a very large structure. These data are
unpublished, but are contained in a University of Swansea report [16]. The results seem to suppor
estimation procedure forgf) in Equation (2). Moreover, D was found substantially independent of cracl
extension when crack initiation occurred in SSY. However, this is clearly an area where more computatit
evidence is required.

CHARACTERISTICS OF C

In order to apply energy dissipation rate theory in structures it will be necessary to develop full solutions
Cp, as a function of applied stress. This might appear to be a daunting task, but it should be no more dift
than the generation of generalised J solutions. It can first be noted,thas Ghe same limits as J as a
function of applied stress over limit stress: for SSY baqtlai@ J tend to G; at plastic limit load both &hd

J tend to infinity.

This suggests that it will be possible to fif &alysis into a FAD (Fracture Analysis Diagram) framework
using (G/G)°® instead of (G/JY. However, the exact shape of the failure envelope will be change
because, in between the limits of G and infinity,inot equal to J. This is illustrated in Figure 2 based on
deformation plasticity definitions of J angl.C
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Figure 2: Definitions of J and gin SSY and after net section yield



In practice, G should be calculated for a real elastic-plastic material following the laws of increment
plasticity. However, computations in deformation plasticity are easier, and might be used to set
estimation scheme. Computations to determigefdC both deformation and incremental plasticity are
currently underway at the University of Illinois [17]. It is expected that work of this type will lead to easil
usable estimates of,@nd G, for structural analysis.

IMPLICATIONS FOR CRACK STABILITY

A typical value of sy for a tough structural steel might be 5000 KJ/ithis is calculated from the
procedures described above, and assumes plane stress, for a long through thickness crack. This imme
explains why unstable tearing is never encountered in structural steels under normal applied elastic stre
A typical applied G for the size of crack which might appear in a structure would be about 2504J/m
prediction of crack stability also results from application of J resistance curve theory to the same probl
Equivalent figures for the Paris tearing modulus, T [4 ], mightke=T150, compared to agdiied = 5.

Both the J and energy dissipation rate approaches predict crack stability by a wide margin for this case
there is a very important general difference between the two methods which can be seen by comparin
toughness and driving force terms.

TABLE 1
COMPARISON OF ENERGY DISSIPATION RATE AND BASED INSTABILITY PRDICTION TERMS
Toughness term Driving force term
J based prediction dXk/da dJ/da (dG/da for SSY)
or Tmat or Tapplied
Energy dissipation rate based prediction Rs{r SSY) G (approx G for SSY)

From Table 1 it can be seen that the toughness terms are rather similar in form. They are linked expl
through Equation (1), and are both dependent on the rate of plastic energy dissipation in a fully yiel
specimen. However, the SSY yielding driving force terms are fundamentally different. The J ba:s
approach uses dG/da whilst the energy dissipation rate approach uses G.

This has two important consequences. Firstly, dG/da has a very low absolute value. It is difficult to
Tappiied Values in excess of 10, whilst on the other side of the equation, it is rare to find metalgWebsT
than 10. Consequently, it is very unlikely that crack instability would ever be predicted by J instabil
theory in SSY. Secondly, dG/da is independent of crack length unless there is a change in the geon
factor Y factor with crack length. Thus, considering a through crack in a large structure (for instance
through crack in the deck of a ship) crack instability is not predicted to become any more likely w
increase in crack length at a given stress level. This seems intuitively incorrect. By contrast, ene
dissipation rate theory says that there is always a critical crack length for instability. For instance, assur
a Dy Of 5000 kJ/m, the example given at the beginning of this section, the predicted critical crack leng
by energy dissipation rate theory is 16 metres at an applied stress of 200 MPa.

Although the prediction of critical crack lengths for steel this tough is likely to be of academic interest or
it is possible to envisage scenarios where the difference between the two theories will become of prac
significance. It is not unknown for the upper shelf tearing resistance of irradiated steels to fall,tofa T
around 30 or less. A steel of this toughness is still unlikely to be predicted to be unstable by J theory in $
because of the inherently low values @fpfed but, the equivalent value ofs§using Equations (1) to (3),



and assuming a plane strain plastic zone size is only 707 kdfaking a SSY instability a distinct
possibility.

It is not even necessary to invoke an alternative theory to show that a prediction of tearing instability b:
on dJ/da must be incorrect for SSY. Figure 3 shows in schematic form the shapes of J resistance
which are obtained by computational analysis of a propagating crack, firstly in the case of a fully yiel
test piece [18], and secondly in the case of a SSY boundary value (elastic G field imposed on a rin
elements around the moving crack tip) [15]. In the former case it is shown that J rises steadily with ci
extension, the familiarrJesistance curve. However, in the SSY case a plateau is reached where the crac
increasing in length even although the boundary G is held constant. There are two problems here
theory: firstly, the J resistance curve is not supposed to depend on size scale, the deeply notched,
yielded bend specimen is supposed to constitute a ‘high constraint’, lower bound for SSY; secondly, wi
the confines of the SSY calculation itself, how can the crack be unstable when the applied dG/da is zera

J for fully yielded
specimen

J for SSY

Crack growth da

Figure 3: Trends in J for SSY and for a fully yielded specimen

There is no problem in explaining both these cases by energy dissipation rate analysis. Small specimer
tested under displacement control; henceg ar2lysis applies. The specimen will be stable as long &s C
less than the current value of D. This is very likely to be the case with a small specimen and a reasol
tough material. While the specimen is stable, accumulated work, and hence J will continue to incre
without limit. However, in the SSY boundary value computation, a steady state is reached where the ap
G matches Ry The crack is then effectively unstable as far as the structure is concerned (i.e. it v
increase in length for any non-negative dG/da).

CONCLUSIONS

Crack stability of ductile materials is best described by energy dissipation rate analysis. The toughness
D is not a material property, but may nevertheless be estimated for any geometry from its value in a s
deeply notched test piece. The necessary estimation schemes are not yet in place, but their general for
be anticipated. The quantitysfis of particular interest, since it is the lower limit of D for crack initiation in
SSY (small scale yielding). This term is the same as the qudngjtyhich appears in the work of
Tvergaard and Hutchinson [15]. Cracks are initially stable, even in SSY, because D exceeds the enel
driving force term Gfrom the outset of crack growth. By this analysis, it is not necessary to invoke &
increase in toughness with crack growth to explain crack stability. The toughness term D can be constal



decrease with crack growth. There will be no instability as long as D excgelissGhown that the use of
a k resistance curve derived from a small specimen may lead to unsafe predictions of crack stability for
toughness materials in SSY.

ACKNOWLEDGEMENTS

This work was carried out as part of Technology Group 4 of the UK Ministry of Defence Corpora
Research programme.

The author’s ideas on crack stability have been developed over many years from review of the litera
and from private discussion and correspondence with many other research workers including Profes
Turner, Atkins, Kolednik, Brocks, and Dodds. Given the extensive published literature on crack stabilit
would be difficult to claim that the ideas presented here are totally original. Apologies are due to
researchers who feel that their published work has been duplicated without due acknowledgement.

REFERENCES

1. Turner, C.E. and Kolednik, O. (1998atigue and Fracture of Engineering Materials and Structures

17,1089.

Irwin, G.R. and Kies, J.A. (1954Yelding Journal Research Supplem&at4), 193s.

Kraft, J.M., Sullivan, J.M. and Boyle, A.M. (1961) @rack Propagation Royal Aeronautical

Society Symposium, Cranfield, UK.

Paris, P.C. et al (1979) &STM STP 66%p. 5 -36.

Gurson, A.L.(1977)ournal of Engineering Material Technolg@g, 2.

Cotterell, B. and Reddell, J.K. (197nYernational Journal of Fracturd3, 267.

Mai, Y-W and Powell, PJournal of Polymer Science: Part B:Polymer Phy&8s785.

Marchal, Y and Delannay, Materials Science and Technology, 1163.

Atkins, A.G. (1999)nternational Journal of Fractur®5, 51.

Sumpter, J.D.G. (199%ngineering Fracture Mechanic§4,161.

Sumpter, J.D.G. (2000) Chapter 5Hmacture, Plastic Flow, and Fractur®OM Communications,

ISBN 1-86125-095-9.

Memhard, D. Brocks, W. and Fricke, S (19%aitigue and Fracture of Engineering Materials and

Structuresl6, 1109.

Memhard, D. Brocks, W. and Fricke, S (1994) Structural Integrity- experiments, models,

applicationsProc. ECF 10, pp149-158, EMAS, Warley, UK.

14.  Brocks, W. and Siegmund, Th. (2000)Rracture Mechanics: Applications and Challeng@soc.
ECF 13 EMAS, Warley, UK.

15. Tvergaard, V. and Hutchinson, J.W. (1998urnal of Mechanical of Physid$), 1377.

16. Boothman, D.P. and Luxmoore, A.R. (198yansea University Repo@R/983/98.

17. Dodds, R.H. and Petti, J (2000niversity of lllinois Private communication.

18. Xia, L., Fong Shih, C. and Hutchinson, J.W. (199&)rnal of Mechanical of Physids, 389.

w N

PP O0W~NOO N

H
no

H
w



