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ABSTRACT

The cohesive crack modd is a rdaively smple and accurate means of describing fracture in concrete and other
quasibrittle materids. In its standard gpplication, it is assumed that dl the materia surrounding the cohesive crack
remains linear dadtic, but detailed andyses show that the tensile strength is exceeded within the supposedly dastic
region, which means that secondary cracking must occur. This paper describes a Smple extenson of the cohesve
crack to include secondary cracking, and discusses the results of its gpplication to three-point- bend test pecimens.

INTRODUCTION

The cohesive crack modd, first proposed by Barenblatt and Dugdae [1,2] in very specific contexts, was later
extended by Hillerborg [3] to become a general gpproach to the fracture of concrete in tenson. The modd has
proved to be relatively smple and efficient to describe the fracture of concrete and other quasibrittle materias, a
least in the cases where failure occurs through a single crack or a set of discrete cracks.

One of the smplifications usudly included in the cohesive crack mode is that dl nonlinear behavior is locdized in the
cohesive zone while the materia surrounding the crack remains linear eadtic. Although this hypothess is not
conceptualy necessary [4,5], it smplifies both theoretical and numerical analyses of cohesive crack problems and
has become a basic ingredient of the standard formulation.

A limitation of the standard formulation of the cohesive crack model isthat it leads to solutions that contradict one of
the basic hypotheses of the model, namely, that a cohesive crack formsin at a formerly eastic point when the stress
reaches the tensile strength f;. Indeed, in most of the solutions of single cohesive crack problems, more or less large
regions have been found in the supposedly dastic bulk materid where the tensile strength is exceeded. For example,
as shown in Figure 1, a smal but finite region over which the largest principa stress exceeds the tensile strength is
found around the cohesive crack tip in a three-point-bend specimen in which a cohesive crack is made to grow in
mode | from ardatively degp notch [6,7]. For unnotched thee- point-bend specimensit has long been suggested that
the standard solution involved dresses exceeding the tensle drength over dlegedly dadtic regions [8], as
quantitatively demongrated by Olsen [9] some of whose results are compiled in Figure 2, which shows large areas
over which the tendle strength is exceeded.



Figure 1: Isolines of maximum principa siress at peak load for athree-point-bend notched beam. The tensile
srength f; is exceeded over asmall region around the cohesive crack tip. (Adapted from [7].)
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Figure 2: Isolines of horizonta norma stress for a three-point-bend unnotched beam for various relative depths a/D
of the cohesive zone . The tengile strength f; is exceeded over the gray shadowed regions. (Adapted from [9].)
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The foregoing facts imply the following 3 consequences:

1. The standard approach to the cohesive crack model leads to inconsistent solutions whose accuracy needs
to be assessed through ahigher level moddl.

2. According to the cohesve crack mode itsdf, secondary cracking must occur in the regions where the
tensle strength is exceeded.

3. A higher-order mode is needed that, while preserving the main concepts of the cohesive crack mode,
eliminates the incondstency and adequately describes the secondary cracking.
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Figure 3. Generic softening stress-crack opening curve.

This work presents one of the many possible higher-order models and describes the results of its application to the
three-point- bend unnotched beam. The mode has the advantages of being conceptudly and formaly smple, and of
using only concepts coming from the cohesive crack itself.

DIFFUSE CRACK MODEL

The diffuse crack modd developed in this work is a three-dimensond generdization of the unidimensona model
proposed by Planas and Elices to describe shrinkage microcracking in concrete [10]. The basic ingredient of the
model is the cohesive crack, which is assumed to form perpendicular to the maximum principd stress when this
reaches the tensile strength f,. After the cohesive crack has formed, the stress transferred across its faces is
assumed to be given, for monotonic mode | crack opening, by a unique function of the crack opening w :

s = f(w) (@)
where f (w) isusudly known as the softening function and (for concrete) has the shape depicted in Figure 3.

To build the diffuse crack modd we use the basic cohesive crack mode just described together with some smple
complementary assumptions regarding crack kinematics. For smplicity, we first describe the uniaxia modd and then
give the generdization to three dimensons.

Uniaxial Model
The basic ideain the uniaxid modd is that diffuse cracking can be described as an array of pardle cohesve cracks,

spaced at ardatively smdl distance s, in an otherwise dastic bar. If the cracks are close enough, we can describe
their macroscopic effect as adistributed indadtic train e given by

e’ = )

where w isthe average crack opening.

The uniaxid dress transferred through the crack array for monotonic indastic stretching, directly derives from the
softening curve (1) as

s = f(se”) = f,(e”) 3

where f (€”) isastress-indadtic srain curve which displays softening. However, if the crack spacing is smdl, the
softening rate tends to vanish, and the mode displays perfectly plastic behavior. Indeed, for a softening curve such



as that in Figure 3, with an initid trend gpproximetely linear, defined by the horizontal intercept w;, the softening or
stressdrop Ds isgiven by

Ds = f—e¢” (4)

Hence, for infinitdy close cracks, s vanishes and so does Ds . Therefore, as far as monotonic dretching is
concerned, the behavior tends to perfectly plastic as the crack spacing is reduced.

To complete the mode, we need to specify the unloading behavior because eventudly a main cohesive crack will
develop, and as it grows, the zone of diffuse cracking may unload. Planas and Elices [10, with the results of other
authors [11,12], ] justified that when a crack opens only dightly it does not close again upon unloading. We adopt
here this point of view and assume that the indadtic strain e” is fully irrecoverable. This is formally identical to
assuming an dadic-plastic stress-dtrain behavior. The behavior is perfectly plagtic if s=0, and is plagtic with
softeningif st 0.

Triaxial Model
The amplest way to generdize the former uniaxial mode to three dimengonsis to assume an dastoplagtic behavior
with a Rankine criterion and associative flow rule. The corresponding equations are

s = E(e- €) ®)
s, - f,(€")=0 (6)
de’ =P d&r )

where s isthe stresstensor, E the fourth-order elastic tensor, e the strain tensor, € theindastic strain tensor, S
the maximum principa stress, e® the equivaent indadtic train, and P, the projector of s in the direction of itsfirst
principal stress. Thefunction f_ (e®) isidentica to that defined for the uniaxial modd, by equation (3).

NUMERICAL ANALYSS

The modd just described was applied to analyze the influence of diffuse cracking on the predicted behavior of

unnotched three-point-bend beams. Geometricaly smilar beams were andyzed with a span-to-depth ratio of four.

Five beam depths were considered, scaled according to the ratios 1:2:4:8:16. Three cd culations were made for each

beam depth:

1. Standard cohesve crack modd: main cohesive crack running through eastic materid.

2. Nonsoftening diffuse cracking: main cohesive crack running through a materid with (potentidly) infinitely close
diffuse cracks (crack spacing s= 0).

3. Softening diffuse cracking: main cohesive crack running through a materid with diffuse softening cracks
corresponding to an assumed minimum crack spacing identicd to the finite ement sze (s = D/64, where D is
the beam depth).

The softening curve used in dl the caculations (the only materia property required gpart from dastic congtants) is
shown in Figure 4. This corresponds to an actual microconcrete tested in the authors' laboratory.

The numerical smulations were carried out usng ABAQUS. Softening spring eements located aong the centra
cross section smulated the main crack. The surrounding materia was simulated through a user-defined routine
(UMAT) implementing the model defined in the previous section (none of the finite eement codes accessble to the
authors implement a Rankine plagtic criterion with associative flow rule).
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Figure 4: Softening curve used in the computations
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Figure 5: Numericd modding: () finite dement mesh over the right half-specimen, (b) domain subdivison—I for
norma eements and |1 superdement.

The finite dement mesh used to modd the right half of the specimen is shown in Figure 5, together with the definition
of the eagtic superdlement used to speed up the calculations, which were driven in arc-length control, and were free
of problems for the sandard cohesive crack modd. When diffuse cracking was included, the convergence rate was
dower, and problems arose in continuing the calculation for large specimens where strong snap-back was present,
paticularly for the diffuse cracking with softening. Spontaneous unloading sometimes occurred, which required
direct intervention of the operator (sopping just before unloading and restarting the calculation using the saved
results and a different loading Step).

RESULTS

The reaults are shown in dimensionless form, so they are useful not only for the particular microconcrete considered
here, but aso for any other materid with a softening function of identicad shape. In particular, the dimengonless sze
of the specimen is obtained by dividing the depth of the specimen D by the characteridtic length |, defined as

_EG
=3

t

(8)
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where E is the elastic modulus. The value of the characteritic length of the microconcrete was |, = 122 mm,. while
for an ordinary concrete | ,, » 300 mm.
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Figure 6: Right haf of the specimen; the dark rectangle shows the zone, magnified in the following figure, where
diffuse cracking takes place. All dimensions are referred to the beam depth.

One of the main results is that the diffuse crack modd relieves the oversiress appearing in the standard cohesive
crack approach, so the stress nowhere exceeds the tensile stress. Of course, this is done at the expense of inglastic
srains appearing in the materid. The indadtic strain concentrates in the small dark rectangle shown in Figure 6, and
its digtribution ingde that rectangle is shown in Figure 7 for various cases. For nonsoftening diffuse cracking, the
indadtic srain is smoothly distributed, and is more intense for small Szes (7a) than for large sizes (Figure 7b). For
softening diffuse cracking the indagtic grain is again more intense for smal szes (Figure 7c) than for large Szes
(Figure 7d), the ditribution being less smooth and with localization bands that may be identified in small Szes (Figure
7¢). Thisisthe main difference between the two diffuse crack models.

The firg consequence of the locdization is that the maximum indagtic drain is aout 5 times larger in the softening
diffuse cracks. This is shown in Figure 8a together with the influence of the beam depth. Although the existence of
locdlization bands is numericaly sgnificant, its effect on the experimenta resultsis nil. In fact, the softening associated
with the worgt gtrain locdization is shown in Figure 8b and is less than 0.4% of f; for al the investigated Sizes. The
corresponding  (maximum) crack opening is w» 0.003G./f, »0.1mm for a typicd concrete with
G: =100N/mand f, =3 MPa. This means that the locdization bands, which could be seen as isolated cracks, are
virtudly impaossible to detect experimentally since their opening is in the submicron range.

Figure 9 shows the load-displacement curves for two beam depths caculated in the three ways defined in the
previous section. The effect of induding diffuse cracking is seen to be margind. In particular, the influence on the
peak load never exceeds 1.2% of the value computed by the standard method
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Figure 7: Indlagtic strain distributions for diffuse cracking: (a) and ( b) nonsoftening; (c) and (d) softening. The
parameter e, =e"E/ f,isthe equivaent dastic srain referred the dastic uniaxia strain at pesk sress,
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Figure 8. Sze effect on indadtic grain locdization: (@) maximum inelastic strain versus beam depth for the two
models of diffuse cracking, and (b) maximum amount of softening occurring in the diffuse cracks versus beam depth.
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Figure 9: Comparison of load-displacement curves computed according to the three models: (a) for D/I,, = 0.15;

and (b) for D/I, =1.20.

CONCLUSIONS

Both versons of the diffuse crack mode described here (nonsoftening and softening) seem to be adequate to
eliminate the incondstency of the standard cohesive crack model  and to describe secondary cracking that
must necessarily occur in specimens and Structures failing through a single main crack.

Although the softening verson of the modd shows locdization a a numericd leve, its influence on the
mechanical response is negligible and the locdlizations are impossible to detect experimentaly since they
correspond to localized displacement jumps of the order of tenths of amicron.

Since in the softening verson of the mode some degree of arbitrariness is present (only one crack per
element is alowed and the size of the eement is arbitrary) we suggest using the nonsoftening verson unless
there is evidence againg this (e.g. if alocaization of secondary cracking is known to exist).

One gtuation where multiple cracking is known to exist is that of cracking induced by shrinkage or thermd
gradients. In such cases, the softening version of the modd can be usad to follow the evolution of diffuse
cracking as well as of main cracks (a main crack would be represented, then, as a crack band).

For three-point-bend unnotched beams, the mechanical response is affected only dightly by the secondary
cracking. The standard modd (which is smpler and faster) can thus be used for most practica purposes
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