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ABSTRACT

The decreasing size of the plastic zone of a large crack growing by fatigue as the applied stress intensity
factor range 'K decreases implies a concomitant increase of the plastic strain gradient there. In a ductile,
crystalline material, a plastic gradient must be resolved by storing a density of Geometrically Necessary
Dislocations (GND) proportional to it. Such density represents an extra amount of dislocations superposed to
the dislocation density that would locally accumulate without the presence of gradients for the same local
plastic deformation in any volume element of the plastic zone (the size-independent Statistically Stored
Dislocations (SSD) density). The net effect of the gradients is to progressively hinder the plasticity at the
crack tip as 'K decreases. For materials where the crack advance per cycle 'a can be assumed proportional
to the crack tip opening displacement 'a v CTOD, the sole effect of the plastic gradients leads to predict a
fatigue threshold effect.

In this paper such contribution to the fatigue threshold has been quantified for ferritic steels by performing
FEM calculations (ABAQUS£ code) using a gradient-dependent continuum plasticity model based on the
storage of GND and an appropriate constitutive equation of the Voce type. Further refinements of the model
can easily be proposed.

INTRODUCTION

Conventional plasticity ignores the existence of size effects without any trouble for most macroscopic
engineering purposes [1]. However, several observed plasticity phenomena display a size effect whereby the
smaller is the size the stronger is the response. Plastic strain gradients appear either because of the geometry
of loading or because the material itself is plastically inhomogeneous [2]. The existence of plastic size
effects in the low scale, as attested by experimental evidence, leads to the conclusion that any continuum
theory based solely on strain hardening, with no strain gradient dependence, would necessarily predict an
absence of any such size effect [3]. In the present paper, the contribution of the plastic strain gradient effects
not only to the fatigue threshold for crack propagation  but also to the flow stress in ductile materials are
analised. The steep gradients of plastic strain that appear in the plastic zone at the crack tip can be predicted
if we include size effects in the constitutive law postulating that the yield stress depends both upon strain and
strain gradient.

As a point of departure, we will discuss the specific relation between flow stress and dislocation density that
is in common usage. According to the experimental observations carried out by Narutani and Takamura [4]
and other investigators [5-7], the flow stress is proportional to the square root of dislocation density U
irrespective of the grain size, amount of strain and test temperature. For a coarse-grained, single-phase
material, which can be regarded as “structureless”, the flow stress at zero temperature is set equal to
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Here, M is the average Taylor factor, which evolves in the process of straining (in what follows, M will be
considered constant for simplicity), b is the magnitude of the Burgers vector, G is an appropriate shear
modulus and D̂ is a constant of order unity which depends, in part, on the strength of the
dislocation/dislocation interaction [8]. Thermal activation may lower this effective obstacle strength so that
the flow stress at a finite temperature and strain rate becomes

UDHV GbTs ˆ),( �                                                             (2)

where ),( Ts H� is a function that goes to 1 as To 0.  From eq (2) it is apparent that the flow stress is a product
of a rate sensitivity term and a structure sensitive term. The flow stress, as given by Eqs. (1) and (2), relates
only to the impediment to dislocation motion that is provided by other dislocations. In most materials, there
are other contributions to the plastic resistance. In some cases (e.g., lattice resistance, solution hardening,
some grain size effects), these are additive to the contributions discussed above [8]
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Here, the rate dependence of Vo may be more important than that of D̂  (or s), or it may be negligible; the less
rate sensitive term (contained into the Vo term) is often called an “internal stress” (Pierls or friction stress).
The total dislocation density UT is defined by Ashby [7] as the sum of geometrically necessary dislocations
U

G and statistically stored dislocations U
S.  The statistically stored dislocations are accumulated in pure

crystals during straining and are responsible for the normal 3-stage [7]. Plastic strain gradients are caused by
the geometry of deformation, by local boundary conditions (this case) or by the microstructure [2]. These
strain gradients require, for compatibility reasons, the presence of geometrically  necessary dislocations of
density UG, which are introduced to accommodate the incompatibility of deformation between neighbouring
grains.

Dislocation density-related constitutive modelling
The step of translating from the simple dislocation equations to a continuum formulation is not obvious. The
statistically stored dislocations, US, are assumed to be dependent on the plastic strain H

p, while the
geometrically necessary dislocations, U

G, are assumed to be dependent on strain gradient wH
p / wx [9] or in a

linear manner with the reciprocal of the grain size [4, 7].

In its present state, dislocation density-related constitutive modelling is considered mature enough to be
broadly used in finite element codes including viscoplasticity [10]. In order to formulate the grain-size or
local boundary conditions dependence of the total dislocation density, it is necessary  to derive an equation
to describe the accumulation of dislocations during deformation, but the constitutive equation to describe the
work hardening process in polycrystalline materials has not been well established. The flow stress
dependence on a rate sensitivity term and on a structure sensitive term (including lattice resistance and
solution hardening) is accounted for Eq. (3). For the purpose of this paper, we assume that V identifies only
the dislocation/dislocation interaction component of the flow stress through the evolution of the U term.
Lattice resistance and solution hardening are accounted for the V0 term.
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To describe the work-hardening process in polycristalline ferrite, the following model constructed in the
basis of Kocks-Mecking model (Voce type constitutive equation) is proposed:
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Here, M , UG , US , and others were defined in the preceding, C is a constant ranging from 1 to 2, Feq

represents the magnitude of the curvature tensor FF used as the scalar measure of the density of geometrically
necessary dislocations U

G [2]
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Fni= enkjHij,k

enkj = the alternating tensor
Hij,k = the strain gradient tensor

Uo =  the initial dislocation density (present in the undeformed crystal).

K1 and K2 characterise the processes of dislocation storage and concurrent dislocation annihilation by
dynamic recovery, respectively [11]. The process of dislocation storage is athermal, so that K1 is a constant.
By contrast, the coefficient K2 represents a thermally activated process of dynamic recovery by dislocation
cross-slip (low temperature case) or dislocation climb (high temperature case). The boundary between the
two temperature regimes lies at approximately two thirds of the melting temperature. In both cases, the strain
rate and temperature dependence of K2 can be expressed as [11]:
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where K20 is a constant. The temperature dependence is contained either in n (in the low-temperature case

when n is inversely proportional to temperature T, while *
0H� can be considered constant) or in *0H� (in the

high-temperature case when it is given by an Arrhenius-type equations, n being a constant ranging from 3 to
5).

In the present work we do not consider the temperature and strain rate dependence in K2, and then the term
associated with the dynamic recovery is assumed to be a constant. The identification of  constants K1 and K2

are explained below.

Parameter Identification
For a coarse-grained (or monocrystalline) single-phase material which can be regarded as “structureless”, the
evolution equation in the form of Eq. (9) describes materials where dislocation storage is controlled by the
total dislocation density
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Differentiation of Eq. (1) gives



H

U

U
D

H

V

d

d
GbM

d

d 1

2

1
                                                      (10)

Combining Eqs. (1), (9) and (10), the following equation can be derived
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where 1
2

2

1
GbKMII DT   is the stage II hardening rate, i.e., the slope of the stress-strain curve in stage II

It is recognized that TII is the limit value of the strain hardening rate for V o 0. On the other hand, when V

approaches its saturation value Vs, the strain hardening coefficient 
H

HVT
�

)/( dd  o 0. So, from Eq. (11)
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and Eq. (12) can also be expresed in the form
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The constants K1 and K2 for a polycristalline material can be calculated if the value of  the stage II hardening
rate, TI,,  and the value of the saturation stress Vs are estimated.  In references [12,13] it is established  that Vs

is independent  of strain rate and varies from 0.6 to 3 x 10-2 G for different materials, the higher values being
those for materials with a lower Stacking Fault Energy (SFE). According to Refs. [11,12], the work
hardening rate TII which is almost independent of temperature or strain rate, ranges from 1/15 to 1/30 of the
shear modulus G. In Ref. [14], the following expressions are documented:
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In absence of other expressions, the constants K1 and K2 calculated from a coarse-grained single-phase
material basis, can be used in polycristalline materials
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Finite Element Modelling
The asymptotic crack tip geometry has been modelled  by means of  a finite element mesh using plane strain
elements CPE8R (Figure 1).

Figure 1:  Finite element mesh for crack tip problem using element CPE8R.

Pure mode I is considered with asymptotic displacements u1 (r,T) and u2 (r, T) applied on the outer boundary
of the mesh
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Here, KI  is the stress intensity factor in the crack-opening mode (mode I),  G and Q are the shear and the
Poisson modulus respectively, r is the radius of the mesh, and T  is the angle that defines a node localised in
the outer boundary (Figure 1).

The simplest model of cyclic crack propagation in ductile materials links the crack advance per cycle, da/dN,
either to the CTOD range (the crack tip opening displacement range) or to the advance of the plastic zone (L)
in the symmetry plane side (Figure 1), by assuming geometrical similarity of the blunting-sharpening
sequence at the tip during the fatigue life [1].

To model a gradient plasticity theory using ABAQUS, we use the URDFIL subroutine to read the quantities
that output in the results file. In particular, we read the strains at each Gauss integration point at the end of an
increment, and calculate the strain gradient function from the previous increment (not current strain
gradients). For further calculations, the strain gradients are passed into UMAT routine through a common
block.

RESULTS AND DISCUSSIONS

The fatigue threshold has been quantified for ferritic steels by performing FEM calculations (ABAQUS£

code) using a gradient-dependent continuum plasticity model based on the storage of GND and an
appropriate constitutive equation of the Voce type (Eqs. (5) to (7)). For maximum KI values above 10 MPa
m0.5, no differences in the CTOD or in the size of the plastic zone, L, are obtained from the application of the
conventional theory or the gradient dependent theory. In both cases the usual proportionality of size with KI

2

is predicted, i.e., a Paris’s regime on the blunting - resharpening model of fatigue crack advance.

outer boundary

crack face

crack tip

simmetry plane



(a)                                                                               (b)

(c)                                                                                     (d)

(e)                                                                                               (f)

Figure 2: Equivalent plastic strain contours for increaing values of KI: (a,c,e) Conventional plasticity; (b,d,f)
Strain gradient plasticity. Note the differences in plastic zone size. For KI � 10 MPa m1/2, the plastic zone
taking into account the strain gradient effect is significantly smaller than the plastic zone calculated using
conventional plasticity (Lv KI

2). Note differences in scale.



To observe the size effect which cannot be predicted with conventional plasticity theories, Fig. 2 compares
the equivalent plastic strain contours for different values of KI  (2.27, 7.43 and 10 MPa m1/2). In all cases,
differences in contour values are observed. These differences are due to the strain gradient term introduced
into the constitutive law via Eq. (7). By comparing the results observed in Fig. 2, it is clear that strain
gradient plasticity predicts smaller and narrow plastic zone sizes at the crack tip, for stress intensity factor
values smaller than 10 MPa m1/2.

 CONCLUSIONS

Inclusion of the influence of the plastic strain gradient in the flow stress (“strain gradient dependent
plasticity”) predicts a fatigue threshold of the correct order of magnitude ('Kth�10 MPam1/2 for steel)
without recourse to any other possible contributon to deviatons from the Paris’ law at low 'KI values (crack
closure, etc.).
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