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ABSTRACT

The procedure for solution of the problems on the stressed state and limit equilibrium of anisotropic
cylindrical shell with surface cracks is suggested. The equations of refined Tymoshenko-type shell theory
are taken as the input ones. The essence of method lies in that a three-dimensional problem for the shell with
a surface crack of given sizes is reduced to a two-dimensional one for a shell with a through crack of
unknown length using the generalised δc -model analogue. Here to the crack edges the unknown efforts and
moments are applied and they satisfy the plasticity conditions for thin shells. On the basis of distortion
method the two-dimensional problem is reduced to a system of singular integral equations with unknown
limits of integration and discontinuous right-hand parts, which contain the unknown efforts and moments
values. This system is complemented by the plasticity conditions, and efforts and moments boundedness
conditions. The numerical algorithm for solution of this system is developed. The numerical analysis for
dependence of the crack front opening on its size, physical-mechanical parameters of the shell is carried out.
The relation between the critical crack sizes and loading is determined on the basis of deformable criteria
used in the δc -model.

INTRODUCTION

Investigation of the stressed-strained state and limit equilibrium of anisotropic shells (including the
orthotropic ones) with cracks is carried out within the scope of elasticity theory. In addition, namely the
Kirchhoff shell theory equations are taken as the input ones. Application of the classical theory in
calculating the anisotropic-material shells does not allow to take into account inherent in them effects,
connected with finite shear rigidity of thin-walled elements. Besides, the classical shell theory does not
allow to satisfy completely the natural boundary conditions on the crack contour. So, we shall use the
refined shell theory equations, based on the Tymoshenko hypotheses, accounting for the stated above
peculiarities, to solve the problem on limit equilibrium for an anisotropic elastoplastic shell with a surface
crack.
Note that construction of solution to the classical three-dimensional problem for a shell with a crack, when
two systems of three-dimensional equations in two regions - elastic and plastic with unknown boundary
between them, is a very complicated mathematical problem. Therefore, for the case, when plastic strains by
the front of a non-through crack develop as a thin strip through the whole shell thickness, we shall use the
δc -model analogue. This means, that the plastic strains thin strip is replaced by the surfaces of elastic
generalised displacement discontinuities, and the plastic strains zone reaction on the elastic zone we shall
replace by the unknown efforts and moments , that satisfy the thin shell plasticity conditions. Thus, the



three-dimensional elastoplastic problem for the shell with a surface crack of given sizes is reduced to the
two-dimensional one on the limit equilibrium of elastic shell with a crack of unknown length, to which
edges the unknown efforts and moments satisfying the plasticity conditions are applied.

 MATHEMATIAL MODEL OF SURFACE CRACK IN A THIN SHELL

Consider a thin cylindrical shell, related to the curvature lines α,β [1], (Fig.1). The shell is weakened by the
surface crack located in the crossection α=0 or β=0 and is under the forces and moments symmetric about
the crack. 2 l0  and 2d are the length and depth of the crack, respectively, 2h and R  are the thickness of the
shell and radius of its medium surface, respectively, γ is a coordinate normal to the medium surface.

Figure 1: Scheme of surface crack.

It is assumed that on the crack extension in depth, i.e. on the domain x∈ ] -x0, x0[ and -h≤γ≤h-2d ,the constant
stresses σTX are acting (here x=α,β corresponds to the crack location, x0 =l0/R ,  σTX is yield point for the
shell material perpendicular to the crack surface direction). In the plastical zones in the crack extension x0

<|x|< x1 (x1= l1/R) the unknown normal force N and bending moment M act.
In addition, N and M satisfy the corresponding plasticity condition, e.g., the Treska condition in the form of
plastic hinge [2]
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For the case of ideal elastoplastic material N(x) and M(x) are assumed to be constant , σ∗(x)=σTX [2 ]
For reinforced material [3]

[ ]N x P m x x x x m( ) ( )( )( )= − − − +∗ ∗1 0 1 0

[ ]M x H m x x x x m( ) ( )( )( )= − − − +∗ ∗1 0 1 0 (2)

σ σ σ σ∗ = − − − +( ) ( )( )( )x x x x xTx Bx TX0 1 0

Here m∗=  σBX/ σTX, σBX is the strength limit of material perpendicular to the crack surface direction, P,H  are
such unknown constants , that condition Eqn.1 is satisfied.
But under such approach such condition is not fulfilled for normal stresses

σ γ σ γn nx x( , ) ( , )0 00 0− = +∗ ∗ (3)

for any point (0, x0, γ∗). This is impossible, because always may be found γ∗∈[-h,h-2d], for which
σn(x0-0,γ∗)=σTX, and σn(x0+0, γ∗)< σTX.
Assume  σn= σTX, at x=±(x0+0) through the whole shell thickness, i.c., for all values of γ. But then through
the whole thickness N(x0±0) =2h σTX, M(x0±0) =0. Since the line of unit fibre under the known plasticity
conditions for thin shells is constant, in the plastical zone x0 <|x|< x1 the bending moment is absent. It means,
the stresses diagram along the plastical zones must change the coordinate of unit fibre. Therefore, the
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condition Eqn.1 will be presented in the form:
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Here τ=x/x1 ; τ0=x0/x1 ;km=sgnH ; ξn=γn/h ; γn  is the unit fibre coordinate.
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Let γn  change along the plastical zones linearly.
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Substituting Eqn.6 in Eqn.4 and taking into account Eqn.5, we shall obtain
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Here

( ) ( )n n n0 1 0 1 2 0 1 2 21 1= + = + − = −ν ωτ ν ωτ ων ων,

( ) ( ) ( )m m0 1 0 1 1 0 2 0 02 2 1 2= − + = + − +ν τ ωτ ν ωτ ν ωτ ωτ , (8)

( ) ( ) ( )m m n p2 1 2 0 3 2 02 1 1 1= − + + = = − −∗ν ω ν ωτ ω τ, / .

Thus, from Eqns5,6 follows, that for τ=±τ0 the stresses along all shell thickness are equal to σTX, because
N(x0+0) =2h σTX, M(x0+0) =0 and this means that the condition from Eqn.3 for any γ∈[-h, -h+2d] is
satisfied. M(±1)=H. Subject to the sign of bending moment, two cases ξn(±τ0)=1 or ξn(±τ0)=-1 are possible.
So, in order the normal stresses in the plastical zones be continuos, it is necessary, that a coordinate of the
unit fibre change even under the linear law Eqn.6, and the normal force and bending moment are,
respectively, quadratic and cube polynomials from the coordinate τ.
Hence, within the scope of this model the three dimensional problem on determination of the stressed state
and limit equilibrium of the shell with a surface crack of length 2l0 is reduced to the two-dimensional one of
elasticity theory for a shell with a through crack of unknown length 2l1, on the edge of which the following
conditions
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are satisfied. Here Nl, Ml are normal force and bending moment, respectively, which are the reaction of
material on the discontinuity of inner bonds over the crack. According to our assumption about stresses in
this zones they are determined according to the formulas

N h d M h d dl Tx l Tx= − = −2 2σ σ( ), ( )      (10)

N Mk k
0 0,  are normal force and bending moment, respectively, in the shell without crack, caused by an outer

load (k=1 for a circumferential crack, k=2 for a longitudinal crack)



INTEGRAL EQUATIONS FOR OUR PROBLEM

On the basis of distortion method a system of resolving nonhomogeneous differential equations of the tenth
order, which takes into account the presence of displacements jumps and rotation angles due to the crack, is
written down for solving the obtained elastic problem. The equations of Tymoshenko-type shell theory are
taken as the input ones. Using the 2π -periodic (along a circumferential coordinate) fundamental solution to
this system [4,5], the efforts and moments integral representation in terms of unknown jumps of generalised
displacements is written. Satisfying the boundary conditions on the crack opposite edges Eqn.9, the problem
is reduced to a system of singular integral equations with unknown limits of integration (l1 under the
problem formulation is unknown) and the discontinuous right-hand parts, which include the unknown values
of efforts and moments, acting in the plastic zones In the case of symmetric loading the system is such
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The expressions for α ij ij jK c, ,   for orthotropic cylindrical shells with crack are given in [5], for isotropic

and transversally-isotropic shells are given in [1,3] [ ]u xx( ) , [ ]γ x x( )  are the unknown jumps of normal
displacement and rotation angle under transition over the crack line. The expressions for determination of
N(x) and M(x)  are contained in conditions Eqn.9, what means in the right-hand part of the system of integral
equations Eqn.11. Thus, in these equations besides the unknown integral limits l1, the values P,H are also
unknown. So, the system Eqn.11 is complimented by the plasticity condition Eqn.1 and also by the
conditions of boundedness of normal force and bending moment near the crack, i.e. the corresponding
stress-intensity factors must be equal to zero.

K x K xN M( ) , ( )1 10 0= =       (13)

On integrating the solution obtained and having substituted it into formula

δ γ γ γ γ( , ) ( / ) ( / ) , ,x u x x x x x x hx x        = + < <[ ] [ ]1 1 1 (14)

we obtain the relation for determination of opening of the crack edges at any point. This relation after
substitution of critical value of the crack opening δc for δ(x,γ) becomes a criterion equation which
establishes connection between the applied load, crack dimensions, physical-mechanical and geometric
parameters of the shell under conditions of limit equilibrium state.

THE SOLUTION OF INTEGRAL EQUATIONS

We shall note , that the right-hand sides of the system Eqn.11 are discontinuous functions. The direct
methods for such system solution, as it was shown by the numerical tests [1] gives a large error at the
discontinuity point. Since, we are interested in the crack opening at this point.
The solution of the system will be presented in the form [6]
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whereh ti ( )  is the solution for a corresponding canonical singular integral equations with the discontinuous
right-hand parts.
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This system may be solved using the inversion formula for Cauchy type integrals. Thus, when N Mk k
0 0,   are

constant, h ti ( )  is such
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Substituting Eqn.15 in Eqn.11 and taking into account Eqn.16 we obtain a system of singular integral
equations for determining the function ψ i t( )  . This system is the same as Eqn.11, where ϕi t( )  is changed

by ψ i t( )  , and f tj ( )  is changed by f tj
∗( ) , where
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Taking into account , that hi ( )ξ  are determined by the unknown variables H, P  , the Eqn.19 is written in
the form
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According to Eqn.20 the functions ψ i t( )  will be presented in the form of linear combination
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The system of integral equations from Eqn.11 taking into account Eqn.20 is constructed by the mechanical
quadratures method [5]. This allows to reduce its solution to the system of linear algebraic equations. But,
the unknown length of plastical zone is contained in these equations nonlinearly. So the procedure for
solving these equations is such. In some way x1 is chosen, then the system of integral equations is solved for
each p=0,1,2. From condition Eqn.13 we determine P,H and test the plasticity condition Eqn.1. If this
condition is fulfilled to a prescribed accuracy, the problem is solved, and if not, the value x1 is changed, and
the procedure is repeated. As it was said, that the crack opening at any point is found by the formula from
Eqn.14.

NUMERICAL RESULTS

Numerical analysis for different values of d for a transversally-isotropic shell with a longidudial crack is
carried out. The shell is under inner pressure p. In Fig.2 the graphics of functions for relative values of the

crack front opening δ δ σ∗ = −( , ) /( )0 2 0h d E l Tx  versus the parameter n0 , which characterizes the outer

loading are presented, n pR h Tx
0 2= /( )σ . The computation is made for such values of parameters

h R/ . ,= 0 01 ν = 0 3. ,d h/ .= 0 6, The curves (1), (2) are calculated for the crack length l R0 01= .  , the
curves (3), (4) for the l R0 0 2= . .

Fig.2: Crack front opening versus crack length , loading and shear module.
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corresponds σn a x x( ) = < <const,  x0 1.

corresponds to the results obtained within the scope of proposed model

In addition, the curves (1), (3) correspond to the isotropic shell (E G/ .′ = 2 6 ) and (2), (4) correspond to the
transversally-isotropic one (E G/ ′ = 20 ). E G/ ′ is the ratio of the elasticity module to the shear module in
the area elements, perpendicular to the medium surface. When E G/ ′ ,n0 ,l0 increase, the deviation between

the results for different models will be increase too. Thus, at n0 08= . , l R0 0 2= .  this differences exceeds
20%. When the crack depth increases the difference between the results obtained by the two models will
decrease. It should be noted also that when the crack is increasing, the anisotropy influence on its opening is
decreases.
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