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ABSTRACT

An extended Gurson model incorporating the effects of the shape and spacing of the voids on the growth
coalescence is proposed. The onset of void coalescence is modeled as a transition from diffuse plasticit
transverse localized plastic yielding in the intervoid ligament. A simple constitutive model for the coalescen
stage is also developed. Selected results are presented showing the importance of correctly accounting fc
void coalescence stage, as well as for the void shape and distribution effects. The effect of the void shap
the fracture toughness is finally addressed using the assumption of uniaxial straining state of the fract
process zone. The analysis reveals that the effect of the void shape on the fracture toughness bec
significant for initial porosity larger than T@nd this effect increases for increasing initial porosity.

INTRODUCTION

Recent efforts in the development of computational models incorporating the void growth process has gi
rise to robust predictive methods for crack propagation in ductile solids, e.g. [1,2,3,4,5]. Most of these wol
employed the constitutive model initially proposed by Gurson [6], improved by Tvergaard [7], and finall
extended by Needleman and Tvergaard [8]. Although good agreement with a range of experiments and
cells computations has been observed, the model as it currently stands still suffers from significant limitatior

() The transfer of experimental data obtained from non-cracked specimens for the modeling
cracked structures, and vice-versa, is not yet successful. In order to quantitatively reprodu
experimental g curves, parameters of the model must be identified by fitting to test data taket
under high stress triaxiality conditions such as from a cracked specimen (e.g. [5]). Mar
problems of ductile fracture in non-cracked structures occur at low to intermediate stres
triaxiality, e.g. during metal forming or in structures containing notches.

(i) In the context of the model as it now stands, non-spherical voids can only be accounted for
an ad hoc manner by introduction of an effective porosity.

(i) The phenomenological criteria currently employed to signal the onset of coalescence a
limited to a restricted range of conditions, which are not easily measured experimentally.

These limitations, and others, are thought to arise mainly becawséd(ghapas not directly accounted for

and (ii) void coalescencés not properly modeled. The objective of the present paper is to describe
realistic model which would represent a step towards attainment of a complete model for failure due to
ductile failure mechanism of void nucleation, growth and coalescence. Selected results showing signific
void shape and spacing effects or emphasizing the importance of a sound void coalescence model (i.e. ¢
where simpler model like critical porosity models completely miss the point) are examined in order f



motivate the necessity for such an enhanced model. It is important to mention that all the results presel
here are all in close agreement with more exact void cell prediction [9]. At the end of the paper, the fracti
toughness of ductile materials with preferentially orientated non-spherical inclusion is addressed by invok
the approximation of uniaxial straining for the crack tip stress state.

EXTENDED MODEL FOR THE GROWTH AND COALESCENCE OF VOIDS

We have borrowed heavily from two contributions in the literature, and have integrated them into tl
enhanced model. The first contribution is the model of Gologanu-Leblond-Devaux [10], extending tt
Gurson model to void shape effects. Indeed, it will be shown that void shape effects ancsivrged for in
order to correctly predict the ductility at small stress triaxiality. The second is the approach of Thomas
[11] for the onset of void coalescence. Each of these has been extended heuristically to account for s
hardening. In addition, a micromechanically-based simple constitutive model for the void coalescence stag
proposed to supplement the criterion for the onset of void coalescence. Only axisymmetric stress states
considered in the present work and the solid is made of a periodic distribution of the cylindrical representat
volume element (RVE) defined on Fig. 1.

Figure 1. Representative volume element.

Void growth modelThe extension of the Gurson model due to Gologaral. [10], which has been adopted
here to describe behavior prior to void coalescence, gives a constitutive relation for a porous elastopla
material containing (axisymmetric) spheroidal voids. This particular model, extended for strain-hardenin
contains as state variables: the components of the mesoscopic stresStettsoporosityf, the void aspect
ratio, S and an average yield stress for the matrix materjal, The void aspect ratio is defined 8y In(W)
while W = R/R;. The functional form of model prior to coalescence is:

o=0(2f, S,0,)=0, (1)
f=(@1-f)ES,, (2)
S=9(f,ST), (3)

onén@- )= Ef., 4)
O =0n(ee), ®)
gp =y 92 (6)
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where@ is the flow potentialE® is the mesoscopic plastic strain tensor; (2) and (3) are the evolution laws fo
f andS respectively; (4) is the Gurson [6] energy balance for the plastic work allowing computatign of
using the effective stress-strain curve for the parent material (5); and (6) is the flow rule. The structure of
original Gurson model has been retained. The expressions for the functions guanedshe evolution dd

are given in Ref. [9,10].

Criterion for the onset of void coalescenceAxisymmetric void cell computations [9,12] have shown that
void coalescence consists in the localization of plastic deformation in the ligament between the voids, whi
experimentally, gives rise to a flat dimpled fracture surface. (Void coalescence by shear localization is a
observed in other states of stress [7], but, up to now, our model is limited to tensile localization.) Thomas
[11] has studied the transition to localization for elastic-perfectly plastic solids by looking at artificially
constrained localized solutions giving the load as a function of the void cell geometry. The relation betwe
the overall tensile stress/oy, and the overall straif; based on the full cell length is sketched qualitatively in
Fig. 2. At low overall strain (small porosityy;/oo required for localized yielding is far greater than the actual
value from the cell. However, the actual solution peaks and falls (with the cell still deforming in a diffus
manner) until localization sets in, and then the actual solution merges with the artificially constrained localiz
solution which is significantly affected by the growth of the void. This is the transition point, and from thi
point on, the solution is localized within the ligament.

7 actual solution

E
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Figure 2. Qualitative sketch of the axial stress vs axial strain curves predicted by the constrained localiz
solution and by the full cell solution; the transition to localization sets in when the solution for diffuse
plasticity merges with the solution for a localized plastic flow.

For axisymmetric geometries, Thomason hlas proposed that the average normal stress acting on the cell ¢
° where

onset of localization occurs whe¥) attainsz;
loc r 2—“7 -2 f}/z‘l
2. _ 1 |R R R
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where o = 0.1 andg = 1.2. By comparing this expression with our numerical results for strain hardening
materials, we also find that this expression provides an accurate estimate for the onset of localization wil
the cells, provided thatr, is replaced by an appropriate effective flow stress for the matfjx(see also
[13]), and « and g incorporate a dependence on the strain hardening expanerithe effective matrix
stress,o,,, is obtained using (4) and (5). Thus, with attention confined to cases Wheréhe maximum
principal stress, localization is assumed to set in wiien 3 where
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A fitting procedure performed on a large number of void cell results [9] has revealed that the cogfigient
almost constant equal to 1.24 while

a(n)=0.1+0.217"+4.83n° (0<n<0.3), (9)

With relations (7) or (8), a new geometrical variable related to the void spacing has entered the model.
the sake of simplicity in the formulation of the model, we have chosen ¥ Td&(1) = In(L,/L;). The model
thus depends on all the geometric characteristics of the representative véjdAdgk 1), S (or W). In [9],

the criterion (8) has proved to predict the onset of coalescence with a very high degree of accuracy
porosities ranging between3@and 10, stress triaxialities between 1/3 and 5, void shipéstween 1/6 and

6, and void distributioil between 1/2 to 16.

A model for the post-localization regimeRelation (8) still pertains after the onset of coalescencesZhds
replaced byZ2,, assuming the voids do not depart significantly from a spheroidal shape. The addition.
equations for the evolution of the state variables during the post-localization stage are obtained under
approximation that elasticity, as well as any reversed plasticity, are neglected. In agreement with the void
results, the half-height of the localization zone is approximateR,gse. h=R, see Fig. 1). Plastic
incompressibility still implies (2) for the evolution band the evolution oA is also elementary:

A=E,. (10)

The evolution ofScan be determined by differentiatingFaR,).

5 §H2exp(2(A S))j 1 JEZ wn
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In order to evaluate the average vyield stigs$or the material in the localized band, the average strain rate
& is needed. This is obtained from the evolution of the localized band height as

1/3

goc _N_R :(Zexp(z(A— s»j .
h R

e 3f z* (12)
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SELECTED RESULTS

Void shape effect on coalescence at small stress triaxialfjg. 3 shows the variation of the axial overall
stress as a function of the overall axial strain for three different small stress triaxiblties/2. = 1/3, 2/3

and 1 and three different initial void shapés,= 1/6, 1, 6. Void coalescence is detected by a sudden change
of slope in the curves. At = 1/3, a transition to a localized mode of yielding in the ligament is predicted to
develop for the oblatéN, = 1/6) void and not for the two other void shapes. For initially spherical or prolate
voids, the porosity increases slightly at the beginning of the straining and then saturates to a maximum Vv:
for further straining. The void shape effect on the ductility is also very significant &3 and 1. For larger
stress triaxiality T > 2), ductility does not depend much on the shape.
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Figure 3. Predictions obtained with the void growth - void coalescence model
for fo = 10° Ao = 1, o/E = 0.002,n = 0.1 and\, = 1/6, 1, 6, al = 1/3, 2/3, 1;
overall axial stress vs overall axial strain.
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Figure 4. X, vs E; curves fom = 0.1,W, = 1, a constarit,o/R, ratio equal to 3.22,
andT =1 (a) orT = 3 (b), showing the effect of the cell aspect ratio.

Void distribution effects on void coalescenceThe effect of the initial cell aspect rati, on void
coalescence is depicted in Fig. 4 which presgptes £, forn = 0.1,W, = 1, T = 1, and the void spacing,
L.o/Ry, fixed at 3.22. The true stress - true strain curve of the matrix material is also fflptte@).( The

peak stresses converge to a well-defined point on the curve corresporfgdirgtasi, increases. The limit,
Ag—, corresponds to a single plane of voids in an infinite solid. Aker 16, the porosity is so small that
there is nearly no departure from the culive O prior to localization. The transition to a uniaxial straining
mode is observed for all values 4f For largedo, the onset of void coalescence coincides with the peak
stress, which, consequently, is due to the onset of the void coalescence localization process and not due t
competition between the hardening of the matrix and the softening due to void growth. The slope of t
curve after the onset of void coalescence increasesiyih a result of an increasingly larger zone of elastic
unloading. In Ref. [9], all the results presented here were found to be in close agreement with more e»
void cell computations.



FRACTURE TOUGHNESS PREDICTION

As initially proposed by Andersson [14] and then revisited by Tvergaard and Hutchinson [15], the fractu
process zone can be anticipated as a row of multiple interacting voids which, to a good approximation,
strained uniaxially during the major part of the void growth. Indeed, under large stress triaxiality, the fractu
process involves early localization of the plastic flow in a planar zone of essentially one void spacing
thickness. Assuming spherical voids and isotropic void distribution, Tvergaard and Hutchinson [15] ha
shown that the fracture toughneds, governing crack growth initiation can be expressed as

Jie =15 (13)

wherely is the work per unit area spent in the band until final failure. It can be computed from the Gursc
model according to

-FZn f) (14)

wherev is the Poisson ratio arkflis the Young's modulus.

Xia and Shih [16] and Tvergaard and Hutchinson [17] have shown that the uniaxial straining assumptior
valid as long ado is not too small. Typically, whefy becomes smaller than 0.1%, a one void - crack
interaction mechanism takes place, as analyzed by Rice and Johnson [18] and also discussed in Tvergaar
Hutchinson [17]. In that case, the uniaxial straining assumption looses it pertinence. Furthiknsonet
equal to/, anymore because the fracture process zone is then embedded in the finite strain zone (a
analysis is required to relatd with the far field J). Nonetheless, as long as the stress triaxiality is large
enough, the, predicted by the uniaxial straining assumption for low porosity remains a good approximatio
of the exact/; (although they are not equaldg). Indeed, at large stress triaxiality (typically> 2.5), the
overall stress overall strain curve does not depend much on the stress triaxiality [19].

The analysis of Tvergaard and Hutchinson [15] has been extended by accounting for the effect of the v
shape using the extended-Gurson model. Nogenerally writes

F- F(% n, fo,vvo) (15)

assuming isotropic initial void distributiotid = 1). This extended model allows addressing the anisotropic
fracture toughness of metal alloys formed by rolling, die-extrusion, or deep drawing. Indeed asiooarits

for the void shape, this model is able to capture variations of the fracture toughness with the orientation of
crack plane resulting from preferential orientation of the inclusions (e.g. [20]).

The variation of o/oolro @s a function of the initial porosity for various void shapes is shown in Fig. f €or

0.2 andaw/E = 0.002). The effect of the initial void shape is significant for porosity larger than abaut 10
Prolate shape increaség/ ool while oblate shape reduces it. For void shape departing from spherical
To/oolr cannot be considered as independent of the initial porosity (as shown in Ref. [15] for spherical void
it increases withy for prolate voids and decreases wittior oblate voids. The asymptote for prolate voids
corresponds to a limit porosity at which the void touchesugipger and lower parts of the cell. For oblate
voids, the limit porosity results from that the void boundary is in contact with the lateral sides of the cell.
that case/o/oolr = O because there is no more loading carrying capacity. Using straightforward geometric
relationships, these two limit porosity expresses as:

|=

_2h and f :?2), (16)
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Figure 5. Variation of F = I'y/ooLo as a function of the initial porosifyfor various initial void shape.

peak ~ 0

- J
7 3 n:o.2,GO/E:0.002§
6F ]
5t ]
at ;
2t ]
OF o i N
10* 10° 10% ¢ 107

0
Figure 6. Variation ofoyeal 0o @s a function of the initial porosify for various initial void shape.

The results of Fig. 5 can be used to qualitatively understand and predict the variation of the fracture toughr
as a function of the loading direction for rolled plates with preferential orientation of the second phase. C
can consider that void shape effects can alone explain a factor two in the toughness of steel plates
elongated MnS inclusions. This analysis is only qualitative because of the assumed axisymmetry. In ot
words, a 90 rotation of a prolate void wit, = a does not give an oblate void wiith = 1/a.

The maximum stress attained in the cell is the other crucial parameter of the fracture process. It mainly aff
the resistance to crack propagation [15], also called the "R-curve" effect. Fig. 6 shows that the maxim
stress is not much affected by prolate shape while it decreases as the voids are more and more oblate. C
void shape is thus expected not only to bring about a decrease of the fracture toughness but also of the te
resistance during crack propagation. One also notices that a spherical voidvehapg) (brings about the
maximum peak stress. More results are given and discussed in Ref. [21].



CONCLUDING REMARKS

The new model only depends on the initial values of the state variable and thus avoids the use of crit
porosities (for the onset of coalescence and for final separation). The two additional microstructul
characteristics of the new mod&j,andA,, can be obtained from the same metallographic analysis performed
to ascertaify andL,. At large stress triaxiality (not discussed here), the work spent during the coalescen
stage can be larger than the work spent during the void growth stage. This observation gives anot
motivation for the development of a constitutive model valid after the onset of localization. The comparisc
with the void cell simulations in Ref. [9] has established that the full void growth/coalescence model is able
guantitatively account for variations of all the characteristic parameters of the representative volume elem
of Fig. 1: porosity, void shape, cell aspect ratio, stress triaxiality, for a wide range of matrix flow behavio
The criterion for the onset of coalescence has been shown to be very accurate for most of the cases ana
in this work. Most importantly, behavior at low and large stress triaxiality are adequately encompassed by
same model. The void shape effect on the fracture toughness due to the preferential orientation of sec
phases may alone explain the toughness anisotropy observed in many formed plates or bars.
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