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ABSTRACT

An extended Gurson model incorporating the effects of the shape and spacing of the voids on the growth and
coalescence is proposed.  The onset of void coalescence is modeled as a transition from diffuse plasticity to
transverse localized plastic yielding in the intervoid ligament.  A simple constitutive model for the coalescence
stage is also developed.  Selected results are presented showing the importance of correctly accounting for the
void coalescence stage, as well as for the void shape and distribution effects.  The effect of the void shape on
the fracture toughness is finally addressed using the assumption of uniaxial straining state of the fracture
process zone.  The analysis reveals that the effect of the void shape on the fracture toughness becomes
significant for initial porosity larger than 10-4 and this effect increases for increasing initial porosity.

INTRODUCTION

Recent efforts in the development of computational models incorporating the void growth process has given
rise to robust predictive methods for crack propagation in ductile solids, e.g. [1,2,3,4,5].  Most of these works
employed the constitutive model initially proposed by Gurson [6], improved by Tvergaard [7], and finally
extended by Needleman and Tvergaard [8].  Although good agreement with a range of experiments and void
cells computations has been observed, the model as it currently stands still suffers from significant limitations:

(i) The transfer of experimental data obtained from non-cracked specimens for the modeling of
cracked structures, and vice-versa, is not yet successful.  In order to quantitatively reproduce
experimental JR curves, parameters of the model must be identified by fitting to test data taken
under high stress triaxiality conditions such as from a cracked specimen (e.g. [5]).  Many
problems of ductile fracture in non-cracked structures occur at low to intermediate stress
triaxiality, e.g. during metal forming or in structures containing notches.

(ii)  In the context of the model as it now stands, non-spherical voids can only be accounted for in
an ad hoc manner by introduction of an effective porosity.

(iii)  The phenomenological criteria currently employed to signal the onset of coalescence are
limited to a restricted range of conditions, which are not easily measured experimentally.

These limitations, and others, are thought to arise mainly because (i) void shape is not directly accounted for
and (ii) void coalescence is not properly modeled.  The objective of the present paper is to describe a
realistic model which would represent a step towards attainment of a complete model for failure due to the
ductile failure mechanism of void nucleation, growth and coalescence.  Selected results showing significant
void shape and spacing effects or emphasizing the importance of a sound void coalescence model (i.e. cases
where simpler model like critical porosity models completely miss the point) are examined in order to



motivate the necessity for such an enhanced model.  It is important to mention that all the results presented
here are all in close agreement with more exact void cell prediction [9].  At the end of the paper, the fracture
toughness of ductile materials with preferentially orientated non-spherical inclusion is addressed by invoking
the approximation of uniaxial straining for the crack tip stress state.

EXTENDED MODEL FOR THE GROWTH AND COALESCENCE OF VOIDS

We have borrowed heavily from two contributions in the literature, and have integrated them into the
enhanced model.  The first contribution is the model of Gologanu-Leblond-Devaux [10], extending the
Gurson model to void shape effects.  Indeed, it will be shown that void shape effects must be accounted for in
order to correctly predict the ductility at small stress triaxiality.  The second is the approach of Thomason
[11] for the onset of void coalescence.  Each of these has been extended heuristically to account for strain
hardening.  In addition, a micromechanically-based simple constitutive model for the void coalescence stage is
proposed to supplement the criterion for the onset of void coalescence.  Only axisymmetric stress states are
considered in the present work and the solid is made of a periodic distribution of the cylindrical representative
volume element (RVE) defined on Fig. 1.

Rz

Rr Lz

Lr

Figure 1. Representative volume element.

Void growth model. The extension of the Gurson model due to Gologanu et al. [10], which has been adopted
here to describe behavior prior to void coalescence, gives a constitutive relation for a porous elastoplastic
material containing (axisymmetric) spheroidal voids.  This particular model, extended for strain-hardening,
contains as state variables: the components of the mesoscopic stress tensor, 66 , the porosity, f, the void aspect
ratio, S, and an average yield stress for the matrix material, Vm.  The void aspect ratio is defined by S = ln(W)
while W = Rz/Rr.  The functional form of model prior to coalescence is:
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where ) is the flow potential; ((p is the mesoscopic plastic strain tensor; (2) and (3) are the evolution laws for
f and S, respectively; (4) is the Gurson [6] energy balance for the plastic work allowing computation of Vm

using the effective stress-strain curve for the parent material (5); and (6) is the flow rule.  The structure of the
original Gurson model has been retained.  The expressions for the functions such as )  and the evolution of S
are given in Ref. [9,10].

Criterion for the onset of void coalescence.  Axisymmetric void cell computations [9,12] have shown that
void coalescence consists in the localization of plastic deformation in the ligament between the voids, which,
experimentally, gives rise to a flat dimpled fracture surface.  (Void coalescence by shear localization is also
observed in other states of stress [7], but, up to now, our model is limited to tensile localization.)  Thomason
[11] has studied the transition to localization for elastic-perfectly plastic solids by looking at artificially
constrained localized solutions giving the load as a function of the void cell geometry.  The relation between
the overall tensile stress 6z/V0 and the overall strain (z based on the full cell length is sketched qualitatively in
Fig. 2.  At low overall strain (small porosity), 6z/V0 required for localized yielding is far greater than the actual
value from the cell.  However, the actual solution peaks and falls (with the cell still deforming in a diffuse
manner) until localization sets in, and then the actual solution merges with the artificially constrained localized
solution which is significantly affected by the growth of the void.  This is the transition point, and from this
point on, the solution is localized within the ligament.
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Figure 2. Qualitative sketch of the axial stress vs axial strain curves predicted by the constrained localized
solution and by the full cell solution; the transition to localization sets in when the solution for diffuse

plasticity merges with the solution for a localized plastic flow.

For axisymmetric geometries, Thomason has proposed that the average normal stress acting on the cell at the
onset of localization occurs when 6 z attains 6z
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where D  = 0.1 and E = 1.2.  By comparing this expression with our numerical results for strain hardening
materials, we also find that this expression provides an accurate estimate for the onset of localization within
the cells, provided that V0  is replaced by an appropriate effective flow stress for the matrix, Vm  (see also
[13]), and D  and E incorporate a dependence on the strain hardening exponent n .  The effective matrix
stress, Vm , is obtained using (4) and (5).  Thus, with attention confined to cases where 6z is the maximum
principal stress, localization is assumed to set in when 6 z = 6z

loc where
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A fitting procedure performed on a large number of void cell results [9] has revealed that the coefficient E is
almost constant equal to 1.24 while

D(n)  0.1� 0.217n � 4.83n2 (0 d nd 0.3) , (9)

With relations (7) or (8), a new geometrical variable related to the void spacing has entered the model.  For
the sake of simplicity in the formulation of the model, we have chosen to use A = ln(O) = ln(Lz/Lr).  The model
thus depends on all the geometric characteristics of the representative void cell: f, A (or O), S (or W).  In [9],
the criterion (8) has proved to predict the onset of coalescence with a very high degree of accuracy for
porosities ranging between 10-2 and 10-4, stress triaxialities between 1/3 and 5, void shapes W between 1/6 and
6, and void distribution O between 1/2 to 16.

A model for the post-localization regime.  Relation (8) still pertains after the onset of coalescence and 6z
loc is

replaced by 6z, assuming the voids do not depart significantly from a spheroidal shape.  The additional
equations for the evolution of the state variables during the post-localization stage are obtained under the
approximation that elasticity, as well as any reversed plasticity, are neglected.  In agreement with the void cell
results, the half-height of the localization zone is approximated as Rz (i.e. h  Rz , see Fig. 1).  Plastic
incompressibility still implies (2) for the evolution of f and the evolution of A is also elementary:

zA ( �� .  (10)

The evolution of S can be determined by differentiating ln(Rz/Rr).
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In order to evaluate the average yield stress Vm for the material in the localized band, the average strain rate
He

loc is needed. This is obtained from the evolution of the localized band height as
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SELECTED RESULTS

Void shape effect on coalescence at small stress triaxiality.  Fig. 3 shows the variation of the axial overall
stress as a function of the overall axial strain for three different small stress triaxialities, T = 6h/6e = 1/3, 2/3
and 1 and three different initial void shapes, W0 = 1/6, 1, 6.  Void coalescence is detected by a sudden change
of slope in the curves.  At T = 1/3, a transition to a localized mode of yielding in the ligament is predicted to
develop for the oblate (W0 = 1/6) void and not for the two other void shapes.  For initially spherical or prolate
voids, the porosity increases slightly at the beginning of the straining and then saturates to a maximum value
for further straining.  The void shape effect on the ductility is also very significant at T = 2/3 and 1.  For larger
stress triaxiality (T > 2), ductility does not depend much on the shape.
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Figure 3. Predictions obtained with the void growth - void coalescence model
for f0 = 10-2, O0 = 1,V0/E = 0.002, n = 0.1 and W0 = 1/6, 1, 6, at T = 1/3, 2/3, 1;

overall axial stress vs overall axial strain.
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Figure 4. 6z vs (z curves for n = 0.1, W0 = 1, a constant Lr0/Rr0 ratio equal to 3.22,
and T = 1 (a) or T = 3 (b), showing the effect of the cell aspect ratio.

Void distribution effects on void coalescence.  The effect of the initial cell aspect ratio O0 on void
coalescence is depicted in Fig. 4 which presents 6e vs (e for n = 0.1, W0 = 1, T = 1, and the void spacing,
Lr0/Rr0, fixed at 3.22.  The true stress - true strain curve of the matrix material is also plotted (f0 = 0).  The
peak stresses converge to a well-defined point on the curve corresponding to f0 = 0 as O0 increases.  The limit,
O0of, corresponds to a single plane of voids in an infinite solid.  For O0 = 16, the porosity is so small that
there is nearly no departure from the curve f0 = 0 prior to localization.  The transition to a uniaxial straining
mode is observed for all values ofO0.  For large O0, the onset of void coalescence coincides with the peak
stress, which, consequently, is due to the onset of the void coalescence localization process and not due to the
competition between the hardening of the matrix and the softening due to void growth.  The slope of the
curve after the onset of void coalescence increases with O0 as a result of an increasingly larger zone of elastic
unloading.  In Ref. [9], all the results presented here were found to be in close agreement with more exact
void cell computations.



FRACTURE TOUGHNESS PREDICTION

As initially proposed by Andersson [14] and then revisited by Tvergaard and Hutchinson [15], the fracture
process zone can be anticipated as a row of multiple interacting voids which, to a good approximation, are
strained uniaxially during the major part of the void growth.  Indeed, under large stress triaxiality, the fracture
process involves early localization of the plastic flow in a planar zone of essentially one void spacing in
thickness.  Assuming spherical voids and isotropic void distribution, Tvergaard and Hutchinson [15] have
shown that the fracture toughness, JIc, governing crack growth initiation can be expressed as

J1c  *0 (13)

where *0 is the work per unit area spent in the band until final failure.  It can be computed from the Gurson
model according to
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where Q is the Poisson ratio and E is the Young's modulus.

Xia and Shih [16] and Tvergaard and Hutchinson [17] have shown that the uniaxial straining assumption is
valid as long as f0 is not too small.  Typically, when f0 becomes smaller than 0.1%, a one void - crack
interaction mechanism takes place, as analyzed by Rice and Johnson [18] and also discussed in Tvergaard and
Hutchinson [17].  In that case, the uniaxial straining assumption looses it pertinence.  Furthermore, JIC is not
equal to *0 anymore because the fracture process zone is then embedded in the finite strain zone (a full
analysis is required to relate *0 with the far field J).  Nonetheless, as long as the stress triaxiality is large
enough, the *0 predicted by the uniaxial straining assumption for low porosity remains a good approximation
of the exact *0 (although they are not equal to JIC).  Indeed, at large stress triaxiality (typically, T > 2.5), the
overall stress overall strain curve does not depend much on the stress triaxiality [19].

The analysis of Tvergaard and Hutchinson [15] has been extended by accounting for the effect of the void
shape using the extended-Gurson model.  Now, F generally writes
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assuming isotropic initial void distribution (O0 = 1).  This extended model allows addressing the anisotropic
fracture toughness of metal alloys formed by rolling, die-extrusion, or deep drawing.  Indeed, since it accounts
for the void shape, this model is able to capture variations of the fracture toughness with the orientation of the
crack plane resulting from preferential orientation of the inclusions (e.g. [20]).

The variation of *0/V0Lr0 as a function of the initial porosity for various void shapes is shown in Fig. 5 (for n =
0.2 and V0/E = 0.002).  The effect of the initial void shape is significant for porosity larger than about 10-4.
Prolate shape increases *0/V0Lr while oblate shape reduces it.  For void shape departing from spherical,
*0/V0Lr cannot be considered as independent of the initial porosity (as shown in Ref. [15] for spherical voids),
it increases with f0 for prolate voids and decreases with f0 for oblate voids.  The asymptote for prolate voids
corresponds to a limit porosity at which the void touches the upper and lower parts of the cell.  For oblate
voids, the limit porosity results from that the void boundary is in contact with the lateral sides of the cell.  In
that case, *0/V0Lr = 0 because there is no more loading carrying capacity.  Using straightforward geometrical
relationships, these two limit porosity expresses as:

f0limitprolate  
2

3

O0
2

W0
2   and  f0limitoblate  

2

3

W0

O0

(16)
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The results of Fig. 5 can be used to qualitatively understand and predict the variation of the fracture toughness
as a function of the loading direction for rolled plates with preferential orientation of the second phase.  One
can consider that void shape effects can alone explain a factor two in the toughness of steel plates with
elongated MnS inclusions.  This analysis is only qualitative because of the assumed axisymmetry.  In other
words, a 90q rotation of a prolate void with W0 = a does not give an oblate void with W0 = 1/a.

The maximum stress attained in the cell is the other crucial parameter of the fracture process.  It mainly affects
the resistance to crack propagation [15], also called the "R-curve" effect.  Fig. 6 shows that the maximum
stress is not much affected by prolate shape while it decreases as the voids are more and more oblate.  Oblate
void shape is thus expected not only to bring about a decrease of the fracture toughness but also of the tearing
resistance during crack propagation.  One also notices that a spherical void shape (W0 = 1) brings about the
maximum peak stress.  More results are given and discussed in Ref. [21].



CONCLUDING REMARKS

The new model only depends on the initial values of the state variable and thus avoids the use of critical
porosities (for the onset of coalescence and for final separation).  The two additional microstructural
characteristics of the new model, S0 and O0, can be obtained from the same metallographic analysis performed
to ascertain f0 and L0.   At large stress triaxiality (not discussed here), the work spent during the coalescence
stage can be larger than the work spent during the void growth stage.  This observation gives another
motivation for the development of a constitutive model valid after the onset of localization.  The comparison
with the void cell simulations in Ref. [9] has established that the full void growth/coalescence model is able to
quantitatively account for variations of all the characteristic parameters of the representative volume element
of Fig. 1: porosity, void shape, cell aspect ratio, stress triaxiality, for a wide range of matrix flow behavior.
The criterion for the onset of coalescence has been shown to be very accurate for most of the cases analyzed
in this work.  Most importantly, behavior at low and large stress triaxiality are adequately encompassed by the
same model.  The void shape effect on the fracture toughness due to the preferential orientation of second
phases may alone explain the toughness anisotropy observed in many formed plates or bars.
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