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THREE-DIMENSIONAL AXISYMMETRIC VIBRATIONS OF
ANISOTROPIC LAMINATED CYLINDERS

M.Shakeri®,s.Fariborz®,M.H.Yas"

Free vibration of arbitrary laminated,
anisotropic cylindrical shells with finite
lengths is studied, using elasticity
approach. The coupled partial differential
equations are reduced to ordinary
differential equations(ODE) by choosing
the solution composed of trigonometric
functions along the axial direction.
Through dividing each layer into thin
laminae, the variable coefficients in ODEs
become constant. Combining all exact
solutions obtained by means of appropriate
continuity conditions, the corresponding
solution of the exact governing equations
is successively approached. Numerical
examples are also presented.

INTROUDUCTION

The mathematical complexity in analyzing three-
dimensional elasticity equations usually makes exact
solutions difficult to obtain. However certain problems
in which a three-dimensional approach can be used still
exist. Most of these problems can be solved by assuming
the solution to be composed of trigonometric functions
in the axial and circumferential directions.The
solution for the resulting ODEs can be obtained by
introducing . the displacement potential function.
Usually this method is used with isotropic and
transversely isotropic material, whereas the Frobenius
method is used with orthotropic materials.

Although the aforementioned three-dimensional
elasticity approach provides exact solution,
considerable mathematical complexity prevents more
general problem from being solved. As a consequence, an
approximate elasticity approach under the assumption of
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h,/R,<<1 (where h, and R, denote the thickness and mean

radius of the k th.lamina ) was suggested by Soong(1l).
The advantage of this assumption is that the the ODEs
with variable coefficients can be reduced to ODEs with
constant coefficients that can be solved exactly. Based
on this assumption recently the authors have considered
free vibrations of laminated anisotropic hemispherical
shells(2).

In this paper solution based on elasticity equations is
presented for axisymmetric vibrations of arbitrarily
laminated,anisotropic cylindrical shells of finite
length.

PROBLEM FORMULATION

Consider a laminated composite hollow cylindrical shell
of length L with M constituent orthotropic laminae. The
mean radius and the thickness of layers are denoted by
R, and h, ,x=1,2,..M respectively. The material axesof
any orthotropic layer are not necessarily aligned with
the x,and 6 directions. Hence The constitutive
equations of a layer are as follows:
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(1)
The equations of motion in terms of displacement
components in cylindrical coordinates for a material
with constitutive Eq. (1) are
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The coefficients of the above equations are functions
of variable r which makes the solution formidable. To
circumvent this difficulty, the following change of
variable are used [1]

1 1

1 h o
= R, (1-n), — < " (1-2m,) , M = — - 1 (3)

r2 k Rk

Eq. (2) in terms of the new variables become
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In the derivation of the above equations, we made use
of the approximation 1+, =1
For simply supported boundary conditions
U'x(OIT?)=0"x(L;T')=° ’ Ur(or”ﬂ)=ur(Lr'ﬂ)=0 (5)

The inner and outer surfaces are tration free. Thus
0, =T, g=Typ=0 (6)

Moreover, the conditions of continuity of displacement
and interlaminar stresses are

k h k+1 h k h k+1 h
A y= L Ok y= g1
ur(x,sz) u (%, ) ue(x,sz) u (x,

2Ry (] 2Ry 41
k h k+1 h k h k+1 h
ul (¢, o) =uy O R ) of (ki) =0 (xRt
+

Kk h k+1 h k h k+1 h
'Cre(xrz—ﬁ;)ffre (Xr"gﬁih ) txr(xlgﬁ_;)=txr (X:——z—ﬁih)

(7)

Successive Approximation Solution
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The solutions to equations (4) which identically
satisfies the boundary conditions on the two ends are
considered as

uf==r sinp XA, (n)e!®t , ug=2:=1cospmer (m)elwt

k m1t
uk==0  cosp,xA, (1) e!®* Pe= 1 (8)

The substitution of (8) into (4) yields a homogenous
system of ordinary differential equations which the
solution to those are

- Ank

% A ® A
A (M) = Ure Bp(m) = uge’™, A (m,) = we™  (9)

Where u: ‘ ué and u: are the unknown coefficients.
Upon inserting solutions( 9) into Egs.(8) a system of
'homogenous algebric equations are obtained which may be

written in matrix form as
[A]{U'} = 0 where (U= {u} ug uy} (10)

The condition for Eg.(10 ) to have nontrival solution

is that the determinate of matrix A should vanish. This
leads to a sixth order algebric equation

Aax® + BAS + cat + DA + EA® + FA + G =0 (11)

The displacement components may be obtained which are
functions of natural frequency w . By substituting the
roots of Eq.(11) into (8) lead to:

t
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k t
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k

t

u =Z:,°=12i=1Ql,;JKxjekJncos (P,X) e'® (12)

X

Where Pﬁ and Q§ are function of w.
Substituting (12) into the traction free conditions (6)
and continuity requirements (7) leads to a system of 6M
homogeneous algebric equations which may be represented
as

[H]{K} =0 (13)
The vector {K} is the mode shape.The components of [H]
which are 6Mx6M matrices are functions of w. From (13)
we have

|H| = 0 (14)

Egs. (11) and (14) should be solved simultanously by the

1712



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

successive approximation procedure to obtain the first
few natural frequencies.

RESULTS

The layers of laminated cylinder are constructed by
graphite-epoxy material having the properties as

E,/E;=15, Gp,/E;=0.342, Gip/E;=C13/E;=0.28, Vio= 0.4

Fig. (1) exhibit the, variations of lowest natural
frequency parameter (w) of antisymmetric (45/-45) and
isymmetric (45/-45/-45/45) angle-ply with respect to the
length to thickness ratio (L/h).The radius to thickness
ratio is R/h = 5. As it is noticed the natural
frequencies of symmetric angle-ply are generally higher
than their antisymmetric counterpart in the entire
range of L/h considered, and that the corresponding
curves have stiffer slopes, especially in the thicker,
shell regime. This is due to the effect of bending-
streching type coupling that charaterizes an
antisymmetric laminate. Fig.(2) show the mode shapes
corresponding to the first frequency parameters of a
relatively thick (h/R= 0.5 ,mR/L=1) two - layered
'(45/0) angle ply. As expected the laminate is
constrained in the axial direction within the outer
ply, with little constraint in the inner ply. Due to
much higher axial reinforcement, the axial
displacements are smaller in the interior of outer ply.

SYMBOLS USED

Csj - stiffness elastic constants
L = length of cylindrical shell
u = radial displacement

u = axial displacement

ug - circumferential displacement
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Figure 1 Variation of lowest natural frequency parameter
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Figure 2 Variation of axial mode
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