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THEORETICAL BACKGROUND FOR THE FATIGUE CRACKS KINETICS
SIMULATION

N. V. Tumanov’

Using the experimental results obtained earlier, the Author has
developed a crack kinetics model based on the interpretation of the
consecutive qualitative changes of the material properties at the
crack’s apex which are caused by a local evolution of the defects’
structure (dislocations, vacancies, and micropores). A qualitative
mathematical model of the crack kinetics has been proposed, in whose
framework the system “propagating crack - material at its front” (the
CM-system) is considered as a non-linear dynamic system with a
parametric action. Its analysis under a quasi-static and random action
makes it possible to describe qualitatively on a common basis the
peculiarities of the fatigue cracks kinetics under regular and irregular
loading.

INTRODUCTION

The experimental dependence which connects the crack propagation velocity
V =dl/dN (I is the crack length, N is the number of cycles) with the envelope K, of the
stresses intensity coefficient K, varying quasi-statically, is the most widespread equation of
the fatigue crack kinetics (for a symmetrical loading cycle). Its diagram (the kinetic
diagram of fatigue failure (KDFF)) is shown schematically in Fig. 1. It is obvious that the
revealed behaviour of the crack kinetics (Tumanov and Cherkasova (1)) cannot be
described by an algebraic constraint between ¥ and K,. The idea propounded in the present
paper is based on using the results (1) for interpreting the successive changes of the
material properties at the fatigue crack apex, which have been caused by a local evolution
of a defects’ structure, developing in stages after the threshold stresses levels have been
exceeded (Kulemin (2)).

Physical model. In conformity with the suggested idea, the first KDFF section (Fig.1)
corresponds to the pre-threshold stresses level at the crack apex. On the second KDFF
section the stresses level at the crack front exceeds the first threshold value (the value K, .,
corresponds to it), which causes an activation of dislocation sources and a simultaneous
increase of the vacancies concentration (2). Fractographically, this is evidenced by fatigue
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striations which are formed as a result of the collectivised dislocations output on to the
fracture surface ((1), Fig.2a); and physically this is evidenced by an increase of hardness
(due to the increase of the slowed-down dislocations density) and a decrease of the material
density at the crack apex. This leads to the formation of a strengthened and extended layer
over there, in which a cyclic plastic deformation of a constant sign (with a positive
asymmetry coefficient) is implemented, and which prevents the crack closure and hinders
its growth (the value 0V/0K is sharply diminished as compared to the first section).

The K, increase within the second KDFF section causes a multiple (turbulent)
slippage at the crack apex and an activation of the dislocations creeping-over, which is a
result of the satiation with vacancies. As a result, the slippage lines and the fatigue
striations formed by them acquire a torn and devious nature ((1), Fig.2d). With the further
K, increase, an opposite trend starts to develop at the crack front along with strengthening:
due to the condensation of vacancies and appearance of microfractures in the places of the
accumulation of slowed-down dislocations the number of micropores grows, the dislocation
accumulations are discharged, and the density of mobile dislocations increases, that is, de-
strengthening (loosening) of the material takes place. These changes lead to the appearance
of a new micromechanism of destruction, namely, shearing of partitions between the
micropores followed by the formation of a dimpled microrelief of the fracture. For
K, > K.».; the indicated mechanism becomes determining; a loosened layer of material is
formed at the crack front and its velocity grows abruptly.

The nature of the dependence between K, and the microhardness H of the material
at the crack front, which is indicative of the above behaviour, is shown in Fig.2. Since the
velocity of the defects’ structure evolution under a cyclic action increase with the growth of
the stresses level (2), then the material located in front of the crack front is at different
stages of this evolution. The latest stage is observed at the crack front, and further on with
the growing distance from the crack all previous stages are implemented. Accordingly, the
properties of the material and its states are changing (Fig.2). For K, > K., ; the loosened
layer at the crack front is followed by a layer of the material whose state directly precedes
loosening, i.e., the maximum strengthened and extended layer. The presence of this layer 1)
prevents the crack closure, providing an intact plastic microrelief (dimples) under
considerable compressive overloads, and 2) localises the material plastification at the crack
front, due to which the plastic microrelief is combined with the microbrittle fracture (1).

To formalise the above described phenomena, it has been found advantageous to
introduce a notion of the “propagating crack - material at its front” system (CM-systems)
whose state is characterised by the crack propagation velocity ¥ and the microhardness H
of the material at its front; the controlling variable is the value of K, and the diagrams “V-
K.“ and “H-K.“ in Figs. 1 and 2 (obtained under the condition that the typical time tr of
the K, variation is much greater than the relaxation time tr of the CM-system to its
equilibrium states) are diagrams of the equilibrium states of the CM-system. Therefore, the
values V.3, H.s and K,,.; on these diagrams determine the critical point of the CM-
system which corresponds to the bifurcation of its equilibrium states or to the equilibrium
phase transition from a strengthened state into a loosened state (to the SL-transition),
whose fractographical feature is a smooth (through the mixed relief area) striated-dimpled
transition of the microrelief. In this context the anomalous scatter of the striations pitch in
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the extended area of the mixed dimpled-striated relief (1) is a typical critical phenomenon -
anomalous fluctuations of the system’s state variables near the critical point. Since the
transition is equilibrium, it is completely inverse, which can be seen from the nature of the
change of the fracture microrelief (1).

For a fast variation of X, (Tr<<tg) (in particular, in case of random fluctuations of
K, with the correlation time Tc<<tg implemented in the basic experiment (1)), the state of
the CM-system is determined by the mean value of the controlling parameter everywhere,
except the area adjacent to its bifurcation values. Fluctuations of K, in the vicinity of X, ;
lead to non-equilibrium phase SL- and LS- transitions of the CM-system - a transition from
the strengthened state into a loosened one and back beyond the critical point. A peculiarity
of these transitions is their abrupt spasmodic nature, since the CM-system slips by the
intermediate states or maintains them for a long time. Under non-equilibrium conditions in
the vicinity of the bifurcation value of the controlling parameter, the CM-system functions
on two temporal scales: the stay in each state is followed by an abrupt transition between
them, i.e., a bistable condition is implemented which causes a spasmodic crack kinetics.
The fractographic indications of such behaviour are fatigue bands and spasmodic dimpled-
striated and striated-dimpled transitions of the fracture microrelief (DS- and SD-
transitions) (1).

Mathematical model. We consider the following dynamic system as the simplest qualitative
model of the CM-system: V = @,(v), here A is the controlling parameter, and ¢, (v ) is the
function which is non-linear in relation to ¥ and linear in relation to A . Expanding it into a
series with respect to the equilibrium values of the crack propagation velocity ¥, , which
correspond to the strengthened state of the CM-system (the second KDFF section), and,

restricting ourselves to the first two terms, we obtain X=ax+ azxz, where
x=V-V,. Let a,=al (a>0), where A=(K.- e23) / Ke25.  Introducing  the
dimensionless time 7 =ar , We obtain
x=Ax-cx?, (1)

where ¢=-a,/a (a,<0). The bifurcation diagram of the stationary solutions of
Eq.(1) is given in Fig.3 (the solid lines correspond to the stable states, the dashed lines - to
the unstable ones). The signs of a, and a, have been chosen so, that the velocity in the
super-critical state ¥, =V, +A/c (the third KDFF section) exceeded the sub-critical

velocity ¥} , the way this happens under the SL-transition of the CM-system. As is evident,
the bifurcation diagram provides a qualitatively proper reflection of the KDFF behaviour in
the vicinity of K, ;.

To analyse the non-equilibrium states of the CM-system, we consider the solutions
of Eq.(1) under the conditions of fast random fluctuations of the controlling parameter A

(relative to the mean value A = (X, - K.3)/K,, 5, where K, is the mean value of
K.). We assume that Teo << i , this makes it possible to employ the Markov processes

method. The Fokker-Plank-Kolmogorov equation for the unidimensional density of the
system’s state probability p(x,7) has the form
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where y =K,/K,, ; .,vx =0 /K, is the variation coefficient K, , o is its root-

mean-square deviation. For y >1 Eq.(2) has a stationary solution pg(x) - gamma-

distribution with parameters @ =2(y —1)/y’vy, B=2cK];, /ok. For y <1 there

exists a single stationary state x=0, ie, ps(x)=6(x), where & (x ) is the delta-
function. As can be seen from Fig.4, for y <1 the system is in the sub-critical non-
equilibrium state (x =0); for y >1 and a >1 itis in the super-critical state (x > 0) ; and
for 0 < a <1 both states are possible, that is, the system is in the bi-stability condition.
The bifurcation diagram of the stationary non-equilibrium states of the CM-system, which
characterises the qualitative change of pg(x) depending on the parameters y and v, is
shown in Fig.5. In conformity with the experimental data revealed in (1), the bi-stability
condition, which is absent under the equilibrium conditions (v = 0), is located between
the sub- and super-critical non-equilibrium states, and with the increase of ¥ the CM-

system passes consecutively from the sub-critical state into the bi-stability condition, and
afterwards into the sup-critical state.

Adequacy check. In addition to the qualitative agreement with the regularities which were
revealed early, the suggested model has predicted one more regularity, namely, the
expansion of the bi-stability area with the growth of v, (Fig.6), which has been confirmed

by a special experiment. As can be seen from Fig.6, the fracture section with fatigue bands
corresponding to the bi-stable behaviour of the CM-system (to the spasmodic crack
kinetics) increases consecutively with the growth of v, .
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Fig. 1 The kinetic diagram of the fatigue Fig.2 The diagram of equilibrium states
failure. “H - K, “ and modification of the material

properties in front of the crack’s front.
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Fig3 The bifurcation diagram of the Fig. 4 The probability density of the stationary
equilibrium states of the CM-system model. non-equilibrium states of the CM-system
model.
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Fig. 5 The bifurcation diagram of the stationary non-equilibrium states of the CM-system model.

Fig. 6 Fatigue fractures of blades under random loading with the growing value of Vi :
@ vy =01, ®) Vg = 03, (©) vy =04

1372



