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STRESS INTENSITY FACTOR, COMPLIANCE AND INVERSE
COMPLIANCE FORMULA FOR THREE-POINT BEND SPECIMENS

J. Y. Pastor, G.V. Guinea, J. Planas, and M. Elices*

An expression for stress intensity factor, load-point compliance
and inverse compliance of three-point bending beams with
straight through crack are presented here. The stress intensity
factor expression was calculated using the well known Srawley
expression, and correcting the effect of the concentrated force of
the loading point in finite specimens. The compliance formula
was obtained by direct integration of this stress intensity factor,
using the classic Irwing method. Finally, a method is proposed
for calculation of the inverse compliance, of general application
for any span-width ratio.

INTRODUCTION

The three-point bend (TPB) specimen with straight through crack is a geometry
widely used for the determination of elastic fracture parameters of many materials.
It is usually employed with a span-width (S/W) ratio equal to four according to the
standards (1), and sometimes with S/W=8.

This paper gives new high accuracy expressions for the stress intensity
factor, load-point compliance, and inverse compliance for the standard three-point-
bend specimen, with span-width ratio of four as a function of the crack length (a).
The compliance results are compared with others available in the literature, and
with the data obtained from a modelization by finite elements. An inverse
compliance expression was also fit to S/W=4; the proposed method is absolutely
general and valid for any span-width ratio.
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STRESS INTENSITY FACTOR DETERMINATION

The well known expression for the stress intensity factor for three-point-bend
specimens with S/W = 4 given by Srawley (2) overestimates the value of the stress
intensity factor for short cracks (Pastor ez al. (3), Bakker (4)) since it do not
account for the disturbance of the stress distribution due to the concentrated force.
This error is far larger than the accuracy claimed for this expression (0.5 percent).

A more accurate expression for this stress intensity factor can be obtained
taking the original points obtained by Srawley (2) for relative crack depth (o=a/W )
greater than 0.2, and modifying the value for =0 according to the suitable stress
distribution along the central cross-section due to the concentred load, P, proposed
by Thimoshenko and Godier (5). With this correction a new value for o=0 has
been derived and a new stress intensity factor, K, fitting was carried out:

ﬂs-al’zY(a) )

where B is the specimen thickness, and Y(o) a geometric dimensionless function
given by.

1.945-1.256a2 + 3. 3000 - 3.225+ 1.224(14)
Yia)= 3/2 2)
(I+20)(1-o)

This equation is valid for the entire range of the relative crack depth, 0< a<I,
with a maximum deviation from the original points of +0.07 %. Figure 1 shows a
graphical representation of the stress intensity fitting in relation to the original
points, and their relative difference.

LOAD-LINE DISPLACEMENT DETERMINATION

The relation between the compliance and the stress intensity factor can be obtained
using the energetic approach to linear elastic frecture mechanics. The available
energy per unit increase in crack surface area, G, is given by:

P¢ do
2WB da

2
c=K _ 3)
E

where C is the compliance of the TPB specimen, and E’ is the generalizated elastic
modulus (E’ = E for plane stress, and E’ = E/(1 - v2) for plane strain).
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An alternative expression for the specimen compliance can be written as:

2
c=tt 3 yig)

P  2BEW? @

where u-ug is the load-line displacement due only to the presence of the crack, and
V(a) is a nondimensional function depending only on the specimen geometry. To
evaluate V(o) one can make use of equations (3) and (4):

ﬂ(_a_) =3aY(a)

&)

and by integration obtain:

0.4774 _0.6594 33361 _

(o) ()2  (1+20)

8.69300. + 3.23750t, — 2.13080> +0.9190a* — (6)
0.224205 —1.2377In(1 — &) + 6.64321n(1 + 2a)}

V(o) = 3?(1Y(a)da = 24{3.5182 -
0

This result is compared in Figs. 2 and 3 with those proposed by Chen Chich
et al. (6), Wu (7) and Tada ez al. (8), and with a modelization by finite element
method (FEM) made by the authors (9).

Our results agree quite well with the results of Wu, except for a<0.2. This is
because Wu did not consider the correction due to the concentrated force. The
FEM results show a constant difference of about 2 %. On the other hand, the Tada
equation diverges from the others, as already reported Underwood et al. (10). The
divergence of Chen’s values for a<0.45 and «>0.75 suggest that Chen’s
expression does not fit the right asymptotic behaviour.

INVERSE COMPLIANCE CALCULATION METHOD

For three-point bend specimens, the crack length may be computed from crack
mouth opening displacement (CMOD) measurements by the elastic compliance
method. Nevertheless, this method is not always suitable when working with very
small samples, at high temperatures or in aggressive environments. In these
circumstances, the crack length from the load-point displacement, u, or from the
specimen compliance, C, could be computed.

375



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

An inverse compliance expression may be derived from equation (6) by
setting:

o= % = Ag(x)A;(x) with @
X
Ag(x) = —1PO and 8)
P
Po
Afx)=1+—2e
! d(1+fx,)" ©)

where x = V(a), and the coefficients (py, c, d, f, g, h) are fitted to obtain the same
values of pairs (o, C(c)) form predicted by equation (4).

The following expression is then derived for three-point bend specimens with
a span width ratio of four,

X

- .. 0.5246

a=—13415 |, X (10)
- \/ & 1.184(1+ 0.7770x 826911186

5.415

This fitting was found to be accurate to within less than 0.3 percent of the
original values for any relative crack length. The relative error between the original
and the computed value for o is displayed in Fig. 3.

The results described here are suitable for general use in fracture testing
using TPB specimens, including fatigue crack growth rate tests, and unloading
compliance Jic. This method can also be used in the determination of the crack
length from the load-line displacement for any span-width relation with similar
accuracy (9).

ON SION

This paper gives a corrected fitting of the stress intensity factor for the of three-
point bend specimens with span-width ratio of 4 proposed by Srawley (2).

This fitting has proved more accurate than 10.07 % in the entire relative crack
depth interval (0<a<1). With this new stress intensity expression, an equation for
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the load point compliance has been derived by direct integration, which is accurate
within one percent for any relative crack length. This expression generalised the
Wu (7) and Underwood (8) equations for compliance, and should be useful for
fracture testing, and for elastic crack length determination from the inverse
compliance expression. Finally, presented a general method is proposed for the
calculation of the inverse compliance formula with an accuracy better than 0.5
percent.
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Figure 1. Dimensionles stress intensity Figure 2. Dimensionless compliance
versus relative crack length.

factor versus relative crack length.
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Figure 3. Relative difference between  Figure 4. Relative error in the inverse

various compliance results and eq. (4).

determination of the crack length.
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