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SINGULARITY FIELDS OF A CRACK MEETING AN INCLINED
INTERFACE OF TWO ELASTIC MATERIALS AND NUMERICAL RESULTS

J. LI, X.B. ZHANG and N. RECHO *

The aim of this paper is to study the behaviour of a crack
terminating at an arbitrary angle with an interface of two elastic
materials. The asymptotic fields of stress and displacement near the
crack tip are found by using the eigenfunction expansion method. A
numerical method to determine the stress intensity factors is
developed. The found asymptotic fields are verified numerically by
the use of the finite element method. These fields are also in good
agreement with the analytical solutions for the particular cases such
as crack perpendicular to the interface given by Cook and Erdogan
(1). Finally, the crack propagation is discussed.

INTRODUCTION

Most of the experimental and theoretical investigations for bimaterial crack
problem has focused on the few particular cases of crack orientations such as crack
lying aloag, or perpendicular to, the interface. However, cracks advancing or
terminating at arbitrary angles with an interface between two materials may also be
found very often. So far, only few works in literature have dealt with this crack
configuration (2). The purpose of this paper is to establish the asymptotic fields of
such a bimaterial crack. The stress intensity factors can then be determined to
predict the crack propagation.

STRESS SINGULARITIES AND ASYMPTOTIC FIELDS

Consider a semi-infinite crack terminating at an incidence angle 00(0<Bo<m/2)
formed between the crack and the interface of two homogeneous, isotropic elastic
materials (fig. 1). Material 1 occupies region 1 (8,<8<r) and region 3 (-r<0<6o—
1), with Young's modulus E, and Poisson's ratio v,. Material 2 occupies region 2
(8,-n<0<6y), with material constants E, and v,. By using Williams eigenfunction
expansion method (3), the Airy function is supposed as follows:
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UY (r,.0)=r ™ F (8) (1)
where i = 1, 2 or 3 for each region respectively. The singularity exponent A could
be real or complex . By introducing the following boundary conditions of the
problem: the free surface at the crack lips and the continuity of stresses and
displacements at the interface, a system of 12 linear equations with 12
undetermined constants is obtained. To have a non-trivial solution of these linear
equations, one has to verify that the determinant of the operator matrix [L(A)] is
equal to zero:

det[L(A)]=0 (2)
The Newton-Raphson method is used to determine the eigenvalues which
lead, when substituted in equation (1), to singular stress fields. It has been found
that the eigenvalues take different forms. This depends not only on the incidence
angle 6 between the crack and the interface, but also on a characteristic angle 0,
which varies with the ratio of the two material constants. Figure 2 shows the
variation of 6, with the ratio of the two material shear modulus Wi/He. Figure 3
shows the variation of the form of A for W/K, = 0.2 and 5. According to the form of
the eigenvalues A, three different cases can be distinguished : '

i) One pair of real val

When 1,1y #1and 8:<60<90°, one pair of real eigenvalues, A, and A,, is

found. In the case of the crack lying in the less stiff material (H1/p2<1), we have
0.5<A;<A:<1. On the contrary (Wi/p,>1), one finds 0<h,<A,<0.5.
The displacement and stress fields can be defined in each region as follows:

o =i{r}‘1 k@ (e)+ ™2 Ky ) (e)}, uf? =.i{r}‘l kl.u(;)l (6)+r*2 kz.i!(é)z (e)}
o =k, r’*rl.a(ri}l (6)+k, r*z“l,a(,?z ()

ol =k, r}'l‘l.av(ge1 (6)+k, r"z‘l.a%)ez ()

ol =k, rll“.a%l (©)+k, r}‘2—1.6(r%2 () 3)
where HSI) ©) ,ﬁ(é)n (6),6'(;?I (6),6&))“(9) and 65&,(9) are 6-dependent functions

(4) and the index n =1 or 2 corresponding to the two eigenvalues respectively. k,
and k, are the factors dependent on the remote loading conditions like the
conventional stress intensity factors K, and K,. However, they have not exactly the
same signification as K, and K because they don't correspond respectively to the
two fracture modes but to the two eigenvalues A, and A,.

(ii) Single real value case
When 6, = 90° and 8, = 64, a single real eigenvalue A is found. This is also true
for the homogeneous material case (M1/M2=1) in which A=0.5. In this case, by
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substituting A=A,=\, into equation (3) and by using symmetrical or anti-
symmetrical properties related to each fracture mode, the displacement and stress
asymptotic fields can be written as a function of the conventional stress intensity
factors K, and K, (4). One can then separate the two fracture modes easily.

iii) Oni ir of complex conjugate val

When Ly, # 1and 0°<80<6, the eigenvalues become complex: Ai2=A £

iA;. All the components of its eigenvector become complex. A <1 and hence leads
to a stress singularity. The asymptotic stress and displacement fields may be
represented by the real part of the equation (3). If 8,=0, the same results as that
obtained by Williams (3) for homogeneous material case is found: A, = 0.5 .

Since A is complex, so, r* [cos(l Int) +isin(A In 1) ]. It means that the
behaviour of stress and dlsplacement fields near the crack -tip is oscillatory with
stress being bounded by .

The factors k, and k, can also be related to the conventional stress intensity
factors K, and K, by their definition.

NUMERICAL R LT

As discussed above, the factors k, and k, have not exactly the same
signification as K, and K, for homogeneous problem. However, the determination
of these factors is necessary to study the behaviour of cracking.

The eigenvalues and their corresponding eigenvectors can be obtained for
each case by solving equation (2), and the stress singularities may be determined.
The whole asymptotic fields near the crack-tip can be found by equation 3)
according to the form of eigenvalues. After calculating the relative displacements
of the crack lips near the crack-tip by finite element method, the factors k, and k,
are calculated by using kinetic method. The following examples are the appllcauon
of the developed model for the different cases discussed above.

xample 1: crack perpendicul he in 69 =90°%)

In this particular case, Cook and Erdogan (1) have proposed an analytical
solution for a crack terminating perpendicularly to the interface of two infinite
media with an uniform pressure on the crack lips. It is the case of pure mode 1. In
order to verify our developed model, the stress intensity factors K, for different
ratios JLi/jL are calculated and then compared with the analytical solution.

Let consider a plate (40mm x 40mm) formed by two materials with a central
crack (length 2a=2mm). The dimension of the plate is so big with respect to the
crack that the plate can be considered as infinite one. Young's modulus of material
1 equals to 1 Mpa. The uniform pressure o, =1 MPa. The results of the

comparison are shown in table 1. It can be observed that the results obtained
according to our model agree well with the analytical solution. Some small errors
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for K, are due to the calculation of finite element method which is employed in
order to determine the ug displacements on the crack lips. These displacements are

used to obtain k, by the kinetic method according to equation (3) and then the
stress intensity factor K,

mple 2: inclined crack wi he i 0,=45°)

The same plate as before is considered. The inclined angle between the crack
and the interface is 45°. An uniform tensile (o, =1 MPa) is applied on the two

extremities in the Y-direction. The calculated values of k, and k, are listed in table 2.
In order to compare the developed displacement fields with the results obtained by
finite element, the displacements of the points on a cercle around the crack-tip with r
= 0.1a are calculated. Figure 4 shows one of the comparison results between these
two displacement fields. The displacement fields obtained by the developed model
agree well with the r finite element results.

ul/u2 k, k,

HIp2 2 K (MPa*(mm)'~*) (MPa*(mm)!=* ) (MPa*(mm)!-)
(reference | ) (present paper)

0.0072 -8.8760 9.1464
0.00720 .73345 4.922 4.968 0.0433 -4.0710 4.6129
0.04330 .71103 4.176 4.190 0.5000 -1.3911 -0.9857
10000 .5 1 0.960 2.0000 0.8018 -1.5737
23.080 .17575 0.074 0.068 23.080 1.1009 6.2239
13846 07491 0.0079 0.010 13846 1.2705 -8.1590
TABLE 1 - K, for a crack perpendicular TABLE 2 - Factors k, and k, for

to the interface (8,=90°) inclined crack (6,=45°)

CRACK BIFURCATION AND DISCUSSIONS

When finding the asymptotic fields and the factors k, and k,, it is possible to predict

the bifurcation of an unstable crack. According to the criterion of the maximum

circumferential stress Gee, the bifurcation angle will satisfy the following equations:
limSr9 =0 and lim _agT,e = (4)
r—0 r—0

It results in:

klrh—larel 0)+ kzru-laﬂ,2 0)=0

S, 0 G 9 ()]
20
When 6, = 90° or 6, = 6, a single real value is found, A=A;=A,, the asymptotic
tields are similar to those for homogeneous material.
When 6,<6,<90°, the case of a pair of real eigenvalues, equation (5) can be
written as:

)
and k,ri-1 +k,rr2-1 <0 (5
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M-k & 4,(8) +k; ™2~M & o, (8)]=0 (6)
When r— 0, the left part of equation (6) tends to the infinite. However,

because of A2 >Aq SO, *2=M 50 when r— 0. It means that the bifurcation
direction will be governed only by the first term of equations (5), i.e. by the
smaller eigenvalue A,. The other eigenvalue A, does not influence the bifurcation
direction. Only two propagation directions are possible according to the sign of k,

50} 9

to ensure k| < 0. The values of the bifurcation angles for different ratios p, /

11, and different crack incidence angles 6, are given in table 4.
When 0°< 8, < 6, the stress singularities take oscillatory nature. The
bifurcation criterion can not be used directly. Another work has to be developed.

Oa 1 Sl T0 ] 6l sel 40| 30 20 | 10

0.z | -94.54 -98.67] -98.53 -91.24 -76.99
N 50,15 52.72| 56.57| 58.24| 62.25
03 | -93.88] -97.91] -99.500 -96.78 -88.20
| 49901| 5043] 51.99] 5384 56.19
0.5 | 9421] 9827 -10094 -101.0] -96.97| -86.02
| 4931] 4832 48.10| 4907] 5039 55.9
2 29.70| 8545| 81.37] 7741 73.50| 69.38| 63.94
| 5591 -59.51| -6323] -669| -70.62| -74.531 -79.74
~3 [ o0s0[ 8s90] 81Ls52] 7730| 73.19| 69.02] 64.16
] 5639 6035 6434 -68.33] -72.31] -76.36 -80.93

5 | 9180 86.85| 82.18 7772 7343 69.17| 64.63| 57.16
il se2| 6045 6474 -69.04) -7333| -77.62 -82.01 -88.91
TABLE 3 - Two possible bifurcation angles for different pui/p ratios and different
values of angles 6,

CONCLUSION

This work shows how to take into account bimaterial stress singularity at a crack
tip. This allows to determine : a) a characteristic angle 6, (function of W, / p2)
which governs the form of the singularity ; b) the asymptotic displacement and stress
fields ; c) the bifurcation angle of the crack.
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Fig. 1. Crack terminating at the
interface of two elastic materials
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Fig. 2. real-complex eigenvalue
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