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SIMULATION OF 3D DUCTILE CRACK GROWTH BY THE GURSON-
TVERGAARD-NEEDLEMAN MODEL

S. Hao*, W. Brocks*, J. Heerens*, and D. Hellmann*

The GURSON-TVERGAARD-NEEDLEMAN model is applied to simulate
the ductile crack growth in a DE(T) specimen made of the ferritic
steel 20 Mn Mo Ni 5 5. The damage parameters of the model were
determined by fitting the numerical to the experimental load vs
reduction of diameter curves of round tensile bars. A J, curve for
the DE(T), which agrees quite well with the experimental data, is
obtained by a three dimensional FE analysis using the same set of
material parameters. The analysis shows that the model can also
realistically simulate the local crack growth along the crack front,
Le. its thumb nail shape.

INTRODUCTION

The approach of continuum damage mechanics is a promising way to overcome
the numerous problems of size and geometry dependence of the characteristic
parameters used in conventional fracture mechanics. The damage model of GURSON,
[1] TVERGAARD and NEEDLEMAN [2], the GTN model, is widely and successfully
applied to describe initiation and propagation of cracks in ductile materials. The
identification and determination of the the parameters require a hybrid methodology
of combined testing and numerical simulation. Different from classical fracture
mechanics, this procedure is not subject to any size requirements as long as the same
fracture phenomena, i.e. ductile tearing, occur in the specimens or components. The
present study on ductile crack growth in a DE(T) specimen made of the ferritic steel
20 Mn Mo Ni 5 5 demonstrates the capabilities of the model to handle "geometry
effects. Simulations of fracture tests on C(T) and M(T) will follow.
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THE GTN MODEL

The GTN model [1, 2] which is applied in the present study describes the
micromechanical processes of void nucleation, growth and coalescence which
dominate ductile crack growth. It is based on a modified MISES yield condition

O(T' T, f*,0)= ﬂ—zo_;- + 2q]f*cosh(q2t—2rg) = (l + q}f*Z) =0

including a second internal variable, f*, which can be related to the void volume
fraction, f. T and T’ are the mesoscopic CAUCHY stress tensor and its deviator,
respectively, and o() is the actual flow stress of the matrix material. Evolution
equations for f describe the nucleation and growth of voids. Macroscopic crack
growth occurs when a certain value of f is exceeded in a material element. This
model has been implemented as a user supplied routine [3] in the FE program
ABAQUS.

The GTN model contains a total number of nine parameters. Three parameters are
used to model void nucleation (f,, &, s,), three describe the evolution of void
growth up to coalescence and final failure (f,, f,, f), and the three remaining
characterize the yield behaviour of the material (¢,, q,, ¢;). Commonly, it is
assumed that ¢, =1 and ¢; =q,>. ¢, may depend on the hardening of the matrix
material and was set to 1.5 in this investigation. The application of micromechanical
models to ductile fracture is still a rather new approach and no generally accepted
recommendations exist on how to identify and determine these parameters, see €.¢.
the discussion in [4, 5]. As the model is based on microstructural processes some of
the parameters should also be predictable from metallurgical observations.
However, ensured quantitative relations are still unavailable and only qualitative
hints can be obtained. The determination of the damage parameters is thus a mostly
phenomenological fitting procedure which requires a hybrid methodology of
combined testing and numerical simulation. NEEDLEMAN and TVERGAARD [6] referred
to the phenomenon that the onset of macroscopic fracture of a round tensile bar is
associated with a sudden drop of the load. Fitting the numerical results to the
experimental data at this point has therefore become a common technique to
determine f, .

Constitutive equations for strain softening behaviour show effects of localization
of plastic flow which also means localization of damage. This is the governing
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physical mechanism of failure but it may cause problems in the numerical
simulations as the results become dependent of the size of the finite elements in the
damaged zone. This mesh size effect is less significant for tensile specimens but the
prediction of ductile fracture resistance is strongly mesh sensitive. The introduction
of a new material parameter, i.e. a critical length, [, or a critical volume is, hence,
required which is related to microstructural features such as the average distance
between inclusions. A very straight forward way of handling the problem is to
utilize the averaging properties of finite elements themselves, keeping in mind that
the respective constitutive relations have been formulated on a "mesoscale®. The
finite elements in the damaged zone are regarded as "unit cells” and their size as a
microsturcturally meaningful parameter [7]. Yet, there is stll no way to determine
such a parameter from microstructural observations. It has also to be fitted by
comparing numerical and experimental results. Jy curves of fracture mechanics
specimens are sensitive measures to do this.

EXPERIMENTAL AND NUMERICAL RESULTS

A ferritic steel 20 Mn Mo Ni 5 5 has been studied. Its strength and toughness
properties have been characterized by tensile tests ot round bars and fracture
mechanics tests on C(T), DE(T) and M(T) specimens, respectively. The load, F, vs
reduction of diameter, AD, curves obtained from the tensile tests have been used to
determine the flow curve, o(&”), of the matrix material and to identify f, as described
above, see Fig. 1. The parameters for void nucleation were set to f, = 0.04 which
approximately corresponds to the volume percentage of carbides, g, =030, s, =
0.1, and an initial void volume fraction of f, = 0.001 was assumed. An element size
of 0.1 mm in the necking section of the tensile bar and the ligament of the DE(T)
was assumed as in comparative analyses of similar materials [4, 5]. It is concluded
from Fig. 1 that a critical volume fraction of f. = 0.020 best matches the
experimental data. The above parameters are taken for all the following
simulations.

As the fracture mechanics specimens were not side grooved three dimensional
calculations appeared to be necessary. Due to a threefold symmetry only one eigth of
the DE(T) had to be modelled. Fig. 2 shows that the ekperimental and numerical
load (F) vs elongation (AL) curves for the DE(T) specimen agree satisfactorily. The
crack growth resistance is characterized by J and CTOD (8;) vs Aa curves in Figs. 3
and 4, in which the test results show that there is no significant geometry effect for
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these two specimen types. The resistance curve of the M(T) lies much higher but is
not displayed here as the objective of the present study is primarily a comparison of
experimental and numerical resistance curves. The numerically predicted curves
coincide satisfactorily with the experimental ones even though a rather simple
method for estimating the GURSON parameters has been used in this investigation.
Simulations of the M(T) will follow to demonstrate that the model can also handle
"constraint effects” with one set of material damage parameters independent of the
specimen geometry as it was shown in [5].

Fig. 5 displays normal stresses contours in the tensile direction, o;, in the centre
plane of the DE(T), showing that the stress concentration takes place at the actual
crack tip. The model can also simulate the thumb nail shape of the crack realistically
as Fig. 6 shows by comparing the damage in the ligament obtained by the FE
simulation (left) with the experimental crack growth (right). Damage values of f* =
1/g, indicate "final fracture* of the corresponding elements.
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