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SIMPLE FORMULA FOR STRESS NEAR A
CRACK TIP IN A HARDENING MATERIAL

R. L. Roche*

Simple and approximate formula giving stress as a function of the polar
coordinates ( radius and angle) for the HRR singularity are proposed.
The deformation theory of plasticity with a material power law is
considered (incompressible material). Only plane strain in mode I and
proportional loading (no unloading, no initial nor thermal stresses,...) is
studied. A few examples of application are given. Current practice in
writing HRR singularity is discussed. An appendix give indications on
the way the principle of complementary work is used for getting formula
and how to apprise their accuracy.

INTRODUCTION

The singular behavior near a crack tip in a hardening material (the "HRR singularity") was
studied by Hutchinson [1] and Rice [2], and is often described in books on fracture [3]. No
simple analytical expressions giving stress as a function of the polar angle was found. The
aim of this paper is proposing approximate ones, simple for easy use and accurate enough
for reliable results. It will be proposed here the same ones as in a preceding publication [3]
(with cosmetic improvements), more attention being given to the way followed for writing
them (in the appendix).

A power law hardening material is considered here. The material J N/m

constitutive equation is "finite plasticity" (non linear elasticity)

e*/e=(c*/c,)" where c*=(l.55ijs“)°5, e*:(ZeijsijB)"'s are the Von

Mises equivalent stress and strajn, €=2s;g%/30* the strain

components  (incompressible material) and $,=0;0,0,/3 the

deviatoric part of the stress tensor o;. The loading is proportional in

mode I. It is not given by conventional forces, but by the material one J [4], [5] such the
work J8a is needed for a growth 8a of the crack length (thickness equal to one). This
material force can be illustrated as pushing on a fictitious knife on the crack tip. Here it is
easy to see that this material force is equal to the well known J integral [9](see appendix).
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THE WAY FOR GETTING APPROXIMATE FORMULA

Satisfying the equations of equilibrium is essential, the best way to meet this condition is
deriving stress components from the Airy stress function. The current practice’ is choosing
r2*1*D 8) and so is done her, allowing to write the stress components:
o, =[@nt1)/(n+)].f+° o, = [nQ2n+1)/(n+1)*).f o, =—[n/(n+1)].f

f(6) depending on m parameters p, , its choice is subjective, nevertheless some conditions
are imposed by equilibrium (traction free crack surface): fin) = f(n) = 0 and by mode |
(symmetry): £(0) = £°°(0) =0. It could be power series of cos(6/2), but Fourier series are
more convenient: f0)=Z,_," p.cos(i6/2) . This is the choice made here, with
few parameters for getting formula short enough (see appendix).

With the help of the principle of complementary work the parameters p, are determined
as functions of the hardening exponent n. What is needed for simple formula are analytical
expressions, then some ones must be taken to represent the computed numerical values.

RESULTS AND APPLICATIONS
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! There is not enough place to discuss this point, see [1] and [2]. Nevertheless it is useful to

point out that some conditions are required. First: if all strain components are multiplied by a
factor &, all the stress ones are multiplied by one factor X(£) depending only on £ (this condition is
met by a power law, but not by the Ramberg Osgood law for the effective Poisson ratio is
depending on the strain) Second: HRR singularity is expending all over the plane (practically a
large extension in regard of blunting) Consequence: the radius r has only a scaling effect on
all mechanical quantities, for instance all the displacements components can be written
R(r).function(0), displacement gradient components and strain ones are proportional to R’, stress
components to Z(R’) and J integral (on a circle) to R.Z(R’).r. As J is no path dependent (see
appendix), R’.Z(R’) is varying as 1/r. In other words, along any radius any product of any strain
component by any stress one (at the same point) is varying as 1/r.
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DISCUSSION

Limits of validity It is obvious that approximate formula are not fully accurate, the
proposed ones give stresses with an error not exceeding few percents ( for n<25). strain and
displacement values are not so good. It must be pointed out that most of the limits for
application are not due to the simplifications made here. Formula are not valid too near the
crack tip, the hypothesis of linearity between strain and displacement being not correct
where blunting is significant. They are not valid too far from the crack tip, there are several
causes for that. The HRR singularity does not extend all over the plate and the connection
to the far stress field must be considered. Plane strain is only valid when the thickness is
large in regard to the distance to the crack tip. And for small loading, the HHR singularity
could be embedded in a linear one.

Comparison with results available in open literature. It can be seen that stresses given
by the proposed formula are near those given in preceding publications. There is a small
difference in the expression of the maximal equivalent stress, it is to say of what is noted I,
this difference is not troublesome for practical applications (the formula give I,= 2n for an
incompressible linear elastic material (n=1), it is the correct value, the values given in [1]
seem going towards another one). The present formula do not use Young modulus, for it is
not included in the input, being absent from a power law. It must be pointed out that in [1]
the constitutive equation is the Ramberg Osgood one, and the loading is not the material
driving force J but an linear elastic tension field o . as a mater of fact computations were
made on a power law and J ( sce equation (23) ), then they were translated in assuming
hypothesis (small scale yielding,...).

Today writing of HRR singularity ~ Such a way was fully justified when J was only
estimated for linear materials, but now it is possible to compute J in plastic regions (there is
an excellent handbook [7] ) and to base the description of HRR singularity on J. The today
practice is yet keeping too much of the old way. like Young modulus and Poisson ratio
(what value, 0.5 or elastic one?) and assuming that the HRR singularity is always
embedded in a linear one. As most of the cracks appear in plastic regions (stress
concentrations) there is no justification at all to admit that a linear singularity connect the
HRR singularity to the far field. The right way should be the straight computation of J in
the plastic stress field and avoiding useless assumptions like small scale yielding.

CONCLUDING REMARKS

The proposed formula are simple, they can be used for manual computations, or on a
pocket computer, the best way being using a spread sheet. Their main advantage is giving
stress as a function of the polar angle.

They are accurate enough (error less than few percent if the hardening exponent does not
exceed 25) for practical applications ( hydrostatic tension, strain, displacement, CTOD.,...).

As most of the cracks appear in plastic regions it is useless to say the HRR singularity is
cmbedded in a linear one and to introduce quantities like Young modulus, Poisson' ratio.
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APPENDIX: THE USE OF THE PRINCIPLE OF COMPLEMENTARY WORK

OF all the boundary force T, and stress & ficlds that satisfy the cquations of cquilibrium the
"actual” one is such that its (small) variations arc fulfilling ﬁaﬂﬁou.ds = fusT, &, and u;
being corresponding strain and displacement. ( in non lincar clasticity £‘3W9=]’u12‘>Tl where
W‘:ﬂ(a*.o*)/(nﬂ)l ds ). In other words this principle is equivalent to the equations of
compatibility if a/l the ficlds satisfying the equations of equilibrium are considered. Such a
condition is not convenient for applications and a trick is used in practice: only a part of all
these stress fields is considered, cach of them being defined by a set of m parameters p, and
this sct (this vector) is obtained from the m equations WméfurT‘,r, |writing  F(p,...),, =
OF/p and  F(x,.X.,.),, = OF/)x, |. For having stress ficlds satisfying the equation of
equilibrium , a good way 18 taking Airy stress functions depending on m parameters p;. It is
easy to deduce stress and strain components S, G G, €.y &y applied forces T=0,,
T = o, complementary encrgy W_ from them. Unfortunately, displacements are not known,
otherwise the correct solution would be. At first glance. displacement can be deduced from
strain. but that cannot be rigorously made. Compatibility equations are not fully meet and
there are three strain components, three equations between these components and the two
ones of displacement which 1s not possible to meet together.

An other way must be taken. Equ ivalence between the principle of complementary work
and equation of compatibility was contested. a check of it was given by Southwell [7]. The
basic equation’ can be changed in iIL.5¢=0 where ¢ is any Airy function and L the Lamé
function (L=0 is the equation of compatibility written for the first time in 1860 by Barré de
Saint Venant). It's obvious that when ¢ is any function L=0 and equation of compatibility
is met, but for practical application thus only show that an average of L. weighed by ¢
variations should be convenient. This is the way followed here, the m unknowns
parameters p are given by the m equations ﬂL.rb.rz(). In polar coordinates

L=g o~ +18 .+ 26 — 2B, ~2.E and here

66 T > 06T 60T oy T Um0

[ = ge” + [(n.@+2)/(n+1)| g, 2/t D]egb (" derivative of € related to 0).

The conventional writing of the principle can be used for knowing the displacement:
u=(n+1)re, and W= ~(n+2)re, . it is to say U~ —(n+2))r.foeen.d6 .
Such a result deserve some comments. It is easy to se¢ that the two equations giving € and
g, are satisfied. but no the one giving & . The discrepancy between the value of €, related
to the stress field and the one related to the displacement give some idea of the accuracy of
the formula, this difference is &, — {{(0+2)2]€" + [n(n+2)/2(n+l)|.,[oeav.d9 }. Obviously
it is the cquation of compatibility

2 In three dimensional cases, it must be written EHL“,M“.dv =0 where ¢, is a symmetrical

tensor giving a stress field satisfying {he equations of equilibrium o= Cix-Cinn Pirien (the functions

of J. C Maxwell and of G. Moretra) whese €, is the permutation tensor (fully antisymetrical) and
L a symmetrical tensor, the compouenis of it L€ Cuum-Eimokn corresponding to those of the

Riemann-Christoffel curvature tensor R, and therefore meeting the Bianchi'identities L;,=0.
Obviously L, =0 are the six equations of compatibility.

123



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

The equations are not able to give the value of the parameters, but only them multiplied
by an unknown factor ( they give their ratios). The reason for that is the loading intensity
has not be introduced (T is proportional to o). As indicated at the beginning this loading is
defined by material forces. The present case is simple (plane crack, homogenous and
isotropic material, no initial or thermal stress, no unloading) and the material force is only a
vector J parallel to the x-axis. The field is invariant in a translation along this x-axis, hence
the theorem of Emi Noether is applicable, there is an constant integral which is the path one
proposed by Rice [9] and is the material force loading the plate. In polar coordinates:
J=,[ {w.cos8 - o_[u, 50080 — (ug,,+ u)sin6/r]}.ds  w being
the energy density no*™*'/(n+1). Here u is proportional to r'™"!" and the path is a circle (two
half a circle), hence J=2,f0"{ [no*™/(n+1)cos6] — o, [u,cosb/(n-1) — (u,,,— u,)sind/r] ...

... =O5lu,cos0/(n-1) — (ug,,+ u )sinb/r] } .rd®

cos6 — (u,,~ u,)sind/r] —c [u,

or

the computation ot it giving the last unknown as a function of J. All the parameters values
are now known as a function of the hardening exponent n. The last task is choosing simple
analytical expressions to introduce them in the formula.
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