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PROBABILISTIC MODEL OF FATIGUE CRACK GROWTH

J. Drewniak and J. Tomaszewski

A generalized B-model which can describe the statistical features of
crack growth including mean, variance and cumulative distribution
of time to reach a specified crack length is analyzed in this paper. It
is based on a semi-Markov chain and called SMC B-model. In
contradistinction to SMC B-model presented till now, this model is
applied to variable severity fatigue crack growth process, caused by
loading interaction effects and leading to retardation or acceleration
crack growth. Accuracy of this model is compared with
experimental results.

INTRODUCTION

Prediction of fatigue crack growth under spectrum loading is very complicated by
load interaction effects leading to retardation or acceleration phenomena.
Additionally, agreement of crack-growth predictions with results of experimental
tests varies widely, because of the uncertainties of the physical nature of the load
interaction effects. In these cases, when duty cycle (DC) severity changes with
increasing time, nonstationary computational models can be used, for example
nonstationary probabilistic B-model proposed by Bogdanoff-Kozin (1). It is phe-
nomenological model and the crack propagation process is described by a discrete
space Markov theory, i.e. cumulative damage (CD) is regarded as a discrete state-
discrete time finite Markov process. Thus it can be treated as a Markov chain. The
discrete time is measured in numbers of DCs and the fatigue crack growth is
described by a transient discrete damage states. Fatigue crack growth is a physical
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observable CD process, thus the model states are a function of crack length. For the
known mean and variance of time LA for a crack to grow from a, =k, Aato a =
(k, +J) Aa Kozin and Bogdanoff (2) constructed the stationary state dependent BK-
model of fatigue crack growth whose parameters are determined from the randomized
version of Paris-Erdogan equation. In this original model the independent random
variables 7} representing the waiting times in each state have the geometric
distribution and model states are not proportional to crack length. Therefore these
times can not be summing and moreover it is not possible to obtain the model for a
new stress level on the ground of another stress level without additional testing. It
seems that the best method, particularly useful in modelling of fatigue crack growth
is another B-model based on semi-Markov chain (SMC) (Bogdanoff-Kozin (1), (3),
(4)). In this work this model is employed not only to analyze the crack growth
process under constant cyclic loading, but also under two-stage loading what allowed
quantitatively to measure load interaction.

IDEA OF SMC MODEL FOR FATIGUE CRACK GROWTH

In SMC model the independent random variables 7, representing the waiting times
in each state have the negative binomial distribution with parameters b, and ¢, and
model states j= 0, 1, 2, ..., J are proportional to crack length k, Aa = a,, a,+ Aa,
a,+2Aa,..., ay+Jha, respectively, where a,+JAa is the largest crack length that
must be taken into account. Then we know the expected value and the variance of 7,
(Benjamin and Cornell (5)):
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where: W, ,; is the total time to reach crack length (k, +j) Aa
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b, is the number of sub-states of state j and g, is the probability of transition to next
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sub-state in state j .

The cumulative distribution function (CDF) F, , (x) of W, ., is generated using a
unit-jump probability transition matrix (PTM) P,_, and initial probability distribution
po (1):
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The estimation of the parameters of the negative distribution b, and ¢; is possible on
the basis of a discrete version of the Paris-Erdogan equation, because this parameters
are explicit function of the stress intensity function AK, (3)

Aa
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where & is the cycle number in one DC, C and n are material parameters. The
expected value and the variance of the number of DC to reach a given crack length a, + JAa
is
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Thus above-mentioned statistical parameters of fatigue crack growth data can be
compared with empirical data. To this end the fatigue tests were performed on the
hydraulic testing machine MTS. Case-hardened gear wheels (z =39, m = 2) made of
20NCT? steel were selected as test pieces. The initial crack length k, Aa = 0.1 mm.
Tests under constant loading were conducted at the stress of o, = 778 and o, =936
MPa. Fatigue crack growth tests under two-stage loading were conducted for the
high-low case. First was applied o, = 936 MPa and then o, =778 MPa. The fixed
number of cycle at the first stage loading was chosen x, = 140 000 (140 in DC).
Three sets of sample functions from fatigue crack growth experiments under these
loadings are shown in Fig. 1 to 3. Figures 4 - 6 and 7 show fit of empirical (EDF) to
cumulative distribution functions generated by BK-model and SMC B-model,
respectively.

CONCLUSION

Parameters of SMC B-model are explicitly related to the load as in the PE equation
what allows to accommodate this model in case of the load change. Then Wheeler's
retardation factor should be applied in the P-E equation additionally in order to
increase the usefulness of the SMC B-model to the analysis of variable severity of
fatigue crack growth.
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