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ON THE USE OF DIMENSIONAL ANALYSIS IN FRACTURE MECHANICS
J. Setién* and J. M*. Varona*

This work presents an overview on the use of Dimensional
Analysis in Fracture Mechanics. Applying the Dimensional
Analysis methodology shows that the classic base used in
Newfonian Mechanics {L, M, T} is also valid for Fracture
Mechanics. A "partially diseriminated" base {Lx, Ly =Lz, M, T}
can be used to obtain more accurate solutions. Following the
presented methodology it is possible to approach any problem
related to a material's failure. As an example, the determination of
the stress intensity factor for an edge-cracked plate in bending is -
developed in detail.

INTRODUCTION

Dimensional Analysis dates back to 1888 when Fourier introduced the concept of
dimension in his book "Théorie Analytique de la Chaleur” (1). At the end of the
19th. century, Lord Rayleigh applied Dimensional Analysis to solve problems
which had insuperable mathematical difficulties (2). In 1914, Buckingham provided
a practical rule to determine the number of dimensionless quantities that are relevant
in a particular physical problem (3). The complete development of the Dimensional
Analysis theory is due to the works of Bridgman (4) and Palacios (5).

Nowadays, this method can be applied when the complete mathematical
formulation of a physical problem has not been given, helping in the investigation of
the nature of the solution. Applying this method to a problem the number of inherent
variables is reduced, thus proving to be an invaluable tool for experimenters. Also
of great interest in design are the nondimensional coefficients and parameters which
can be obtained from this type of analysis. The main advantage of the method is that
it is both simple and rapid. Its principal shortcoming, however, is that it does not
provide such complete information as might be obtained by carrying out (if
possible) a detailed analysis. The solutions obtained from Dimensional Analysis are
always composed of an ndetermined function of dimensionless quantities.
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Experimental work must be used in order to determine these unknown
functions. Therefore, Dimensional Analysis has to be considered as an auxiliary
tool, particularly useful when analytical solutions cannot be obtained by classic
methods.

There are some fields in which Dimensional Analysis has had virtually no
application. To the best of our knowledge, Fracture Mechanics is one of such fields.
Attempts have been made by Wagner on the problem of the failure of materials (6)
and by Navarro and De los Rios (7) in fatigue (7). Even Rice et al. used
Dimensional Analysis as an auxiliary tool in determining J directly from the load-
displacement curve of a single specimen (8), but a completely rigorous work has not
been developed until now (9). Nevertheless, extensive work exists on related topics
such as size effects (10, 11) or model laws (12) but these are outside the scope of
this paper.

DIMENSIONAL ANALYSIS AND FRACTURE MECHANICS

Inside the framework of Dimensional Analysis theory, Linear Elastic Fracture
Mechanics (LEFM) can be formulated using the following set of fundamental
equations:

d?s m, - m
F=m— (1 F:% (2]
mg =Gy, -m; (3] c=E-¢e (4]
T=p-y (5] dW, =R-dA (6]

where [1], [2] and [3] are a complete set of fundamental equations in Newtonian
Mechanics, [4] and [5] represent the most simplified Hooke's Law expression and
the last one [6] is a cracking condition in the material (energy per unit area needed to
create new surfaces or cracking resistance, R).

The matrix of dimensional coefficients for this set of equations can be
expressed in the form:

() Mm@ F M) G) [E [ (R
my -1 - 2 1 0 0 0 0 0
[2] 2 0 0 1 -2 0 0 0 0
[3] 0 -1 0 0 1 -12 0 0 0
[4] 2 0 0 1 0 0 -1 0 0
[5] 2 0 0 1 0 0 0 1 0
[6] -1 0 0 1 0 0 0 0 1
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Its rank is h = 6 and therefore a base must be integrated by p=n-h=9-6=3
variables. The minor generated by the columns [F], [mg], [Gul, [E], [u] and [R] is
different from zero and the dimensional base can be constitued by the remaining
independent quantities: {[s], [mi], [t]} = {L, M, T}.

Huntley suggested using the "discriminated base" {Lx, Ly =1Lz, M, T} in order
to obtain more accurate solutions from the Dimensional Analysis methodology (13).
However, the stress state in the vicinity of a crack tip of a body is commonly

expressed as a function of polar coordinates (r, 6) as shown in Figure 1 for mode 1
configuration. The r coordinate is geometrically defined by

r=yy2+22 (7]

Consequently, directions Y and Z are equivalent and cannot be discriminated
(9). Therefore in LEFM it is possible to use only the "partially discriminated” base
{Lx, Ly=Lz, M, T} as shall be shown in the worked example.

METHODOLOGY

In order to apply the Dimensional Analysis methodology to a particular problem it is
convenient to follow the next steps:

_ Consider all the relevant variables (X, ... , Xn-1) involved in the problem. The
most general solution can be expressed as an implicit function:

F(xl,xz,...,xn_l;y)=0 (8]

"y" being the variable that one wishes to express explicitly as a function of the
rest.

- Make the matrix of dimensional coefficients corresponding to all these
variables using the {L, M, T} base or {Lx, Ly =L, M, T} if possible.

_ Calculate the rank (h) of the matrix. A complete set of dimensionless quantities
is composed of r = n - h independent nondimensional products.

- Select h independent variables and calculate the r nondimensional products ()
by equating the corresponding dimensional coefficients:

;= x5l x,£2..xpfnxl 5 h+l<i<n [91
- In dimensionless variables the solution of the problem can be expressed as:

W(ny,...m,) =0 [10]
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- Making use of the Theory of Generalized Homogeneous Functions it is
possible to find the value of "y" as a function of the remaining nondimensional
products.

Note that the number of variables in the solution has been reduced fromn tor = n-h.
There are some criteria for selecting the h independent variables:

a) The variable "y" cannot be selected in order to find out its value at the end of
the process.

b) If possible, the "cause” must not be selected so that Hooke's postulate:
"effect" is proportional to "cause" may be used.

¢) Any variable possessing proportionality properties with "y" has not to be
selected so these properties can be used as a simplification in the final general
equation.

In order to clarify the proposed method a worked example is presented below.

APPLICATION

This worked example deals with the determination of the stress intensity factor
for an edge-cracked plate in bending, as shown in Figure 2.

Following this arrangement the relevant variables on the problem are:
a) Plate geometry: thickness (B), width (W),

b) Crack geometry: length (a),

c) Stress state: load (P), span (L),

K{ is the variable to be expressed as a function of the rest. Thus, the solution can be
expressed in the form:

F(B,W,a,L,P:K{) =0 [11]

Using the base {L, M, T} the matrix of dimensional coefficients is:

b ® . L @k
Ll 1 1 1 1 1z
M| o o o o0 1l
T|o o o 0 2:i-2

Its rank is h = 2 and W and P are selected as independent variables. The
number of nondimensional products is r=n -h=6-2 = 4. Therefore, the
following geometrical factors may be defined:
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fomk . el . Gl
w0 TPTw 0 TrTw
and also by equating dimensional coefficients:
3/2
[me, |=[wov Pk |=1OMOT0 5wy =—KI\Z

Expressing [11] as a function of nondimensional variables and making use of the

Theory of Generalized Homogeneous Functions:

P B L a
Ki= 7 f o 12
I W3/2 (W w w) [12]

But, if one considers the "partially discriminated" base {Lx, Ly =Lz, M, T} the
matrix can be expressed as:

® « ¢ ®: K
L 1 0 0 0 0 i -l
L=L,| o 1 1 1 12
M 0 0 0 1 i1
T 0 0 0 0o 2 i 2

In this case h = 3 and a base for the problem could be {B, W, P}. The number
of dimensionless products is now r=n - h =6 - 3 = 3 (one less than above). Thus,
it is possible to define:

and also

-5 W P L0, MO >y KB

Consequently, the solution can be explicitly expressed as:

129



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

P a L
Ki =0 e i
I BJw f(w’w) [131

that is the most complete solution obtainable from the Dimensional Analysis
methodology. However, having basic knowledge in Strength of Materials, the

bending moment for this particular test configuration is

PL
M=-—— 14
A [14]

M is proportional to ¢ and the latter has the same property with Ky. Therefore,

Kj o L and consequently the solution can be expressed as

PL a
K :———f’(——) 15
ewir w &

The solution usually found in bibliography (14) is:

1/2 ~ 2312 5/2
K, :_._PI;/Z 2,9(1) —4.6(1) +21.8(i) - [16]
BW W w W

that is identical in form to [15] if

1/2 3/2 5/2
f'(i) - {2.9(—1] . 4.6(1) +21 .8(3—) - } 7
W w w w

This undetermined function f'(a/W) could readily be determined from
experimental work. Note that the number of variables has been reduced from six in
[11] to one in the undetermined function of the final solution [17].

CONCLUSIONS
The following concluding remarks can be obtained from the present work:
1. Dimensional Analysis methods have been proved to be simple and rapid in
determining the solution of any physical problem, especially when analytical

solutions are not available.

2. Since the obtained solution is always composed of an undetermined function,
Dimensional Analysis should be considered only as a useful auxiliary tool for
experimenters. .
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3. The main advantage of the method is the significant reduction in the number of
variables involved in the problem by considering nondimensional parameters.
Nevertheless a deep knowledge of the physical problem is required to select the
correct variables involved.
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Figure 1. Stress acting in the vicinity of a crack tip in a solid subjected to a mode I
loading.
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Figure 2. Sketch of a three point bending test on an edge-cracked plate.
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