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ON THE EXPERIMENTAL REALISATION OF MODE-II CRACKS

D.N. Pazis "

The theoretically predicted overlapping of the crack flanks for
Mode-II cracks, which makes the linear elastic solution invalid, is
presented. The choice of a certain non-zero rigid body rotation at
infinity helps to overcome this contradictive situation. However,
the experimental realization of pure Mode-II cracks seems to be
a difficult task, because of the extremely small magnitude of this
rotation. Experimental evidence through the method of caustics
supports the theoretical analysis.

INTRODUCTION

Historically, in Fracture Mechanics after the introduction of the three different
independent Modes of cracks by Irwin, the way of thinking about these modes has
changed. In the early years, scientists were speaking about Mode-1, -I1 and -III dis-
placement or deformation, defining the crack Modes by the relative displacements
of the respective crack flanks in a cracked plate. So, the three Modes of cracks
were named as the opening, the sliding or shear and the tearing one. To each one
of them a certain singular stress field and the corresponding S.I.F. were assigned.

Recently, scientists speak more often about Modes of loading instead of
displacements. They mark, in this way, the cause of the relative displacements of
crack flanks, which is not the stress field in the cracked plate but the external
loading. Behind this definition of Modes seems to be hidden the following thought:
“The introduction of a crack with the appropriate direction in a tensile or shear
stress field creates crack-flanks displacements of definite Mode”. Surely a crack
normal to a tensile stress field is a Mode-1 crack. Is it equally true for a Mode-II
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crack and in which direction has the crack to be placed in the shear stress field?
Here it must be pointed out that a shear stress field acts always in two perpendicular
directions because of the symmetry of the stress tensor unlike the tensile stress field
acting in only one definite direction. The answer to this question although
unexpected is definitely no.

A detailed theoretical analysis by Theocaris et al (1) assuming zero rigid-body
rotation at infinity, of the displacement field along the flanks of an internal slant
crack in an infinite elastic plate subjected to uniform biaxial loading at infinity,
indicates that, in case of Mode-II loading conditions, these flanks overlap, Pazis et al
(2). Thus, according to the linear elastic solution the crack flanks sink into each
other, and this overlapping happens as soon as any even small load is applied. Such
an overlapping is of course unacceptable. It indicates that the initial boundary
condition of stress-free crack borders is violated, making the elastic solution invalid.

There are two main reasons for the general acceptance in fracture mechanics
of this Mode-II invalid solution The first is that overlapping is not detected (2)if
one is concerned only with the so called “singular solution”, based on one term
approximations of the stress field. The second reason is that pure Mode-I1 tests and
measurements of the corresponding Ky critical stress intensity factors are very few
compared to the experimental work done on Mode-I cracks.

Any objection that overlapping is a mathematical scrutinity without relation to
the reality, or even that such phenomena do not appear in experiments, where the
plates are not infinite, must be rejected. The uniqueness of linear elastic solutions
implies that this situation is also valid in cracked plates of finite dimensions.
Moreover, experimental evidence on mixed-mode fracture and especially on Mode-
IT cracks (Banks-Sills et al (3), Poldeshny (4)) indicates difficulties due to compres-
sive-stress concentrations and friction forces between the crack flanks, accompanied
with scattering of the experimental results. Finally, calibration calculations (3,4) with
finite elements, where the stress intensity factors are computed from the displace-
ments, result to slightly negative Kj-factors, in situations, where (for symmetry
reasons) K; should be zero, exactly because of the overlapping of the crack flanks.

Aim of this paper is to indicate a possible way out from this self-contradicting
situation. The overlapping mechanism is presented, as well as, preliminary experi-
mental work.

THEORETICAL CONSIDERATIONS
—HA=URETICAL CONSIDERATIONS

The plane problem of a Griffith crack under mixed-mode conditions may be
investigated on the typical geometry embeded in Fig.1 and from which any K, Ky
combination can be obtained. By choosing a negative value for the biaxiality factor
k and an angle B=O.5cos’l[(1+k)/(l-k)] Mode-1I loading conditions are established in
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the plate. For k=-1 and p=45", it is obtained that K;=0 and Ki=co(na)"”. Assuming,
furthermore, zero rigid-body rotation at infinity, the complex potentials ®(z) and
Q(z) of Muskhelishvili (5) are:

D(2)=ico[1 - 2/(z*-a")"*12, Q(z)=-ico[1 + z/(z*-a")'"*)/2 (1)
where z=x+1y.

According to Eqs (1) and assuming no rigid body translation of the whole
plate, x and y crack flanks displacements u and v can be derived as follows:

u. :12c(a2-x2)1"2, v.=2¢X (2)

In Egs (2) index + indicates the upper crack flank and the index — the lower one.
Moreover the dimensionless loading factor ¢ takes the values c=co/E for plane-stress
and c=c,(1-v*)/E for plane-strain conditions, where E and v are the elastic modulus
and Poisson’s ratio of the material.

Fig. 1 shows, in an unrealistic magnification for clarity reasons, the way in
which the crack deforms and how overlapping occurs. In this figure factor c is taken
to be 0.25, while for isotropic elastic brittle materials ¢ is at crack initiation of the
order of 107 or less. According to the second of Egs (2) a double generic point C
on the unloaded crack AB in Fig.1 moves after loading to the double point C" due to
the linear v, displacements. Thus, the initial crack deforms to a line segment A'B’
subtenting an angle A=2c with its initial position. Then, according to the first of Eqs
(2) the double point C splits into two points C' and C due to the elliptic u.
displacements. So, the line segment A'B’ deforms to an ellipse with overlapping
sections. It is now obvious that overlapping occurs by any whatever small load,
provided the crack flanks are initially in touch, as it is the case for natural cracks.

This overlapping occurs not only in the case where k=-1 and $=45°. From Eq.
(16) in ref. (2) it can be readily concluded that if Mode-II loading conditions prevail
in the plate overlapping occurs anyway. Obviously, the strain set up in the plate
under Mode-II loading conditions is what Love (6) calls “pure shear” and not that
what here is assumed, i.e. a strain of “simple shear” The difference between these
two strain-states is based on the rigid-body rotation. That is the reason why a
calculation of the complex potentials potentials ®(z) and Q(z) for the crack problem
shown in Fig.1, without the assumption of zero rigid-body rotation at infinity, has
been undertaken. Such a non-zero rigid-body rotation & does not affect the stress
distribution, so that its choice is irrrelevant for the first fundamental problem,
although it affects the displacement field.

Following the solution procedure given in ref. (5) the complex potentials have
been calculated from the beginning. For the present case (k=-1 and $=45°), they are
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given by:
D(z)=ioo[1 - z/(z*-a”)"?)/2 + iR, Q(z)=-ico[1 + z/(z’-a®)"?)/2 + iR (3)

where the rotation constant R takes the values R=goE/4 for plane stress,
R=¢,E/4(1-V?) for plane strain and &, represents rigid-body rotation at infinity. It is
well known that an additional imaginary constant iR in the complex potentials leaves
the stress distribution unaffected but it creates an additional linear displacement field
of the form: u=-wy and v=ox, corresponding to an infinitesimal rotation o of the
whole plate. Accordingly the crack flanks displacements obtained from the complex
potentials, given by Egs (3), are:

u=22c(a’x)", v,= gox+2cx 4)

It becomes obvious, that by putting &= -A= -2c, the y crack-flanks displace-
ments disappear leaving the crack in its initial position. Thus, the u. displacements
can be realized without any hindrance, resulting to a sliding Mode, i.e to a real
Mode-II crack.

EXPERIMENTAL CONSIDERATIONS

A question rises now: “How could be realized experimentally a rigid body rotation
and relatively to which frame must it be considered?” The only one fixed frame in
space is given by the loading machine, which determines the loading direction.
Thus, rigid body rotation of the plate must take place relatively to the loading
direction. Such a rotation, should take place clockwise, leaving (xo, Yo) directions
fixed in space (see Fig.1). Moreover, this rotation should 8o progressively with load
application, realizing at each loading step a Mode-11I crack.

Preliminary experiments have been performed with precracked perspex plates
and a holding fixture shown in Figure 2. Details on this fixture are given in (6).
Cracks were either machined to their full length of 0.05m by a fine saw or by
pushing a sharp blade into a shorter pre-existing crack. Tensile load applied by pins
introduced in the 90° holes produce in the plate Mode-II loading conditions, while
mixed-mode loading conditions with Mode-II dominance can be produced by load
application through the 82.5° holes. Finally, the well known method of caustics has
been used as observation method.

Experiments have shown a diverging behaviour of the cracked plates under
Mode-II loading conditions according to the two kinds of initial crack machining,
i.e. saw-crack and extended-crack respectively. The fracture load of the plates with
extended cracks was about 2/3 or less than the respective load of identical plates
with saw-cracks. Moreover, the development of the stress field at the crack-tip, as it
was traced by the respective caustic curve-formation, was qualitatively distinguish-
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able.In the plates containing saw-cracks a mixed-mode stress field was initially
observed. Following load increase, the stress field was changing rapidly to a stress-
field with evident Mode-I1 dominance and until fracture no hindrance of the stress-
field development was observed. On the contrary, in plates containing extented-
cracks, Mode-11 stress field dominated from the beginning. During loading the
development of this field seemed to face a kind of obstacles mainly near the crack
flanks, as it was observed at the limit points of the caustic, and fracture was
observed under smaller loads. The impression was that this hindrance supported
fracture. These preliminary observations support the theoretical analysis presented in
this paper. However, no definite results have been experimentally obtained yet.
More experiments are needed and probably a refinement of the method of caustics,
which ignores in its theoretical development the in-plane displacements.

CONCLUSIONS

It was shown that the introduction of a crack in a shear stress field does not result
to a Mode-11 crack but rather to a crack with theoretically overlapping flanks i.e. to
a crack with unknown stress distribution. To realize a Mode-II crack a rigid-body
rotation of the plate with the shear stress field is necessary. This rigid-body rotation
depends on the stress level, the elastic properties and the prevailing plane-stress or
plane-strain conditions. Moreover, in real situations it is so small, that its realization
in experiments seems to be cumbersome. On the other hand there is some experi-
mental evidence that uncontrolled and unknown stress distributions occur in plates
with cracks under Mode-11 loading conditions, depending on the friction forces
developed between the crack flanks, which have the tendency to overlap.

REFERENCES

(1) Theocaris, P.S., Pazis, D. and Konstantellos, B.D., Int. J. of Fracture, Vol.30,
1986, pp. 135-153.

(2) Pazis, D., Theocaris, P.S. and Konstantellos, B.D., Int. J. of Fracture, Vol. 37,
1988, pp. 303-319.

(3) Banks-Sills, L., Arcan, M. and Gabay, H., Engng. Fracture Mech., Vol. 19,
1984, pp. 739-750.

(4) Podleschny, R., Ph.D. Thesis, Ruhr-University, Bochum, 1993.

(5) Muskhelishvili, N.I1., “Some Basic Problems of the Mathematical Theory of
Elasticity”, Noordhoff Int.Publishing, Leyden, 1975.

(6) Love, AEH., “A Treatise on the Mathematical Theory of Elasticity”, 4th
Edition, Dover Publications, New York, 1974

281



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

[
U
ke; ke
i
U
% A
g G 2*
- ! +1
4+ A+ -
C A %
T IE=025
- B=45° k=-10

(-
3 n 3
|
Bo \
000
o
\
O]
e N
~N
[O) 0
> o b =
5o ayr--—- -——
> $1T
i 175w, — 8 :
°—O— ) b, = —O— 0
i} ] ]
o -
o 24 ~e .,
x> & -
4+ 1 o
= N Ipe
\ G\
\ Q 5o
b= 0.4W |1 \
= 0,35W (DG(D\ -
d= 008W [ %
D= 014 W g ‘.a Yo

Figure 2 The holding fixture for mixed-mode cracks
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