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ON STABILITY LOSS OF FIBRES IN COMPOSITE MATERIALS NEAR
THE BOUNDARIES

Yu.N. Lapusta*

A rigorous approach to investigation of fibre instability
near a boundary based on application of three-
dimensional linearized stability equations to each
component of a unidirectional fibrous composite is
developed .It includes statement of the problems for an
arbitrary disposition of parallel fibres, construction of
solutions, exact satisfaction of all of the boundary
conditions and derivation of characteristic equations.
Examples of numerical results are presented and
analysed for some particular cases.

INTRODUCTION

Investigations of fracture mechanisms of composites aimed at
prevention of the loss of their load-carrying capacity are of a great
importance nowadays. In many cases failure may be a result of fibre
instability phenomena occuring near the border of a composite or
product. This fracture mechanism is most commonly encountered in
unidirectional fibrous composites subjected to axial compressive loads
along the reinforcement. Related phenomena may also take place at
compression of composites with insignificant reinforcement in the
directions perpendicular to the direction of the main reinforcement, at
multiaxial and biaxial loading when the compressive loads along the
reinforcement are more intensive than that in the transverse
directions, and in compressed zones of composites or products
subjected to bending or or other action of forces.
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The most precise theoretical results on fibre instability phenomena
may be obtained by means of employment of three-dimensional
linearized stability equations and of the model of a piecewise-
homogeneous medium. At that, the three-dimensional equations
mentioned above should be applied to each element of a composite
material and all the boundary conditions should be satisfied exactly.
Special issue edited by Guz (1) gives an insight into the results which
were obtained in the direction of investigation of the internal
instability (i.e. instability in a structure of a composite without taking
into account the influence of boundaries). However, allowing for the
influence of a boundary surface is often necessary because all the real
bodies have boundaries. So, the purpose of this work is to present
some results on stability loss of fibres in composite materials obtained
with allowance for the influence of a free plane boundary on the basis
of the model of a piecewise-homogeneous medium with the
employment of the three-dimensional linearised stability equations.

PROBLEM STATEMENT

We consider a unidirectional fibrous composite material with free
plare surface. We introduce rectangular (x,y,z) and cylindrical
coordinate systems (rP ’OP 'ZP) in such a way that the fibre with number

q" occupies the region rq<R and the matrix occupies the region y>0.

non

All the quantities related to the fibres will be denoted by superscript "a

and, if necessary, by subscript "q" indicating the number of a fibre.

It is assumed that compression along the reinforcement results in
equal shortening e of the fibres and the matrix in this direction.

We also suppose that there exists total

a m a _ m a ~ m a m (1)
P'l-,ﬂy-P'L ) PB,Q/— p9 , Pz/q/ = Pz , “1"1’:“’1;
m

x m a _ _
Ugy = Uy, Ugy =¥, (2R, ¥=42,3,... )
or sliding contact between the fibres and the matrix.

At the plane surface of the matrix we require the satisfaction of the
zero force conditions

m m
me:O’ PZ =01 PZ‘ =0 (2)
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We consider the case of homogeneous subcritical states of the fibres
and the matrix and we will use general solutions of the three-
dimensional linearised stability theory of deformable bodies proposed
by Guz according to which the pertubations of the displacement
components can be determined through functions Y and X by means
of the formulas
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Where ¥ and X are the solutions of the equations
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In (3),4) A, B, 5, , Z , &, are coefficients depending on the subcritical
state and on the properties of the material.

So, we arrive at the following mathematical formulation of the
problems: it is necessary to determine the minimal shortening for
which equations (4) for the matrix and equations

* a
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for each of the fibres have nontrivial solution satisfying boundary
conditions (1),(2) and attentuation conditions for the displacement
perturbation components at y->oo.

DESCRIPTION OF THE PROCEDURE OF THE PROBLEM SOLUTION

We construct solutions for the matrix in the form of superposition of
expressions represented in rectangular and each of the cylindrical

coordinate systems as follows
oo

t
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Solutions for the fibres are constructed in the form
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In (6) and (7) (ap,hp)denote the coordinates of the centre of the cross-
section of the fibre No. p in the coordinate system (x,y), 1is the length
of a half-wave of the mode of instability, A7 A§'F  are unknown
coefficients and "V,,tf"- (£) are unknown functions.” Functions X& for
the fibres and X for the matrix are constructed in a similar manner.
Representing the solutions for the matrix in a rectangular coordinate
system (x,y,z) and introducing them into (2) we obtain systems of
equations for determination of the unknown functions under the
integral sign.

To satisfy the conditions on the interfaces between the fibres and the
matrix we represent the solutions for the matrix by turns in the
coordinate systems (r, ,8q ,2 ) and insert them jointly with the
solutions for the corresponding fibre into (1). After the change of
variables we arrive at infinite homogeneous system of algebraic
equations in a matrix form

tu ¢, tU te jatu 2
Ap X * Bom X, +2

w=4

tuwv WV
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mn h

Mz

5S¢
{ N=0
(Kv=1,2; wu=1,2,3..,N;, m=0,4,2,...)
for the case of total contact on the interfaces and at a similar system for
the case of sliding contact. From condition of existence of nontrivial
solutions we derive characteristic equations which can be written in
the form
D(ek) =0 )

where D(ek) is the determinant of the corresponding infinite system
of algebraic equations.

So, we can fix initial parameters of the problems and obtain
correspondences between e and k for different forms of stability loss by
means of numerical solution of equations (9). After solving (9) it is
necessary to find the minimal shortening value for the fixed set of
initial parameters of the problem considered.

NUMERICAL RESULTS AND CONCLUSIONS

As a result of computerized solution of the characteristic equation for
the problem for a separate fibre in a semiinfinite matrix for different
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values of Ea/Em and h/R the functions e=e(k) were obtained. Some of
these functions for h/R=2,4,8 and for the case of infinite matrix are
depicted in Figure 1. These results make it possible to conclude that a
free surface of a binder may influence significantly the stability of a
single fibre even if the influence of other fibres is not taken into
account.

As an example of results obtained for a pair of fibres near a free
boundary, relations e=e(k) for four different forms of stability loss are
presented in Figure 2. These results were obtained for Ea/Em=1000,
h,/R=1.5; h,/R=4. Curve No.1 corresponds to the stability loss form
(s.L.f.) in the plane of the fibres in the phase, No.2 - to s.Lf. out of this
plane in the phase. No.3 and No.4 correspond to s.Lf. in the antiphase
in and out of this plane, respectively. While in the case of the infinite
matrix the s.Lf. out of the plane of fibres in the phase (dashed curve in
Figure 2) is realized, here, due to the influence of the free surface, the
s.Lf. in the plane of the fibres is realizable.

Figures 3 and 4 present the values of critical shortenings for a
reriodic row of fibres for Ea/Em=50 (Figure 3) and Ea/Em=1000 (Figure
4). Curves No. 1-5 correspond to the values h/R= 1.5; 2;3,5;9. Results
for the case of infinite matrix are depicted by the curves No.6. Solid
curves correspond to the s.Lf. in phase for which the axes of the fibres
remain in the planes perpendicular to the free border, and dashed
curves -to the s.Lf. in phase for which the axes of the fibres go out of
these planes From the results presented one can see that in the cases of
small distances between the fibres and the free surface the critical
shortenings in the problems considered differ from the critical
shortenings calculated for large distances between the fibres and the
free surface by 30-40%. The joint effects of the free surface and of
mutual interaction of fibres may result in a reduction of critical
shortenings by three times and more. This points out the necessity of
taking into account of the mentioned phenomena in the calculations
of the near-the-surface fibre instability in composites..
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Figure 1 Relations e=e(k) for a Figure 2 Relations e=e(k) for
separate fibre four s.1.f. of a pair of fibres
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Figure 3 Critical shortenings for a Figure 4 Critical shortenings for
row of fibres (Ea/Em=50) a row of fibres (Ea/Em=1000)
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