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ON A FUNCTIONAL DESCRIPTION OF NON-LOCAL STRENGTH
AND FRACTURE. EXISTENCE AND UNIQUENESS.
S.E.Mikhailov*

A functional approach to non-local strength conditions of con-
tinuous and discrete fracture mechanics is extended in this
contribution. A functional safety factor and an functional
(over)load factor are defined for an analyzed point (or for a
potential fracture quantum at discrete fracture). Strength con-
ditions for the point and for the fracture quantum are given.
The possibility of a representation of any non-local strength
condition in the given form and the representation uniqueness
is proved.

INTRODUCTION AND MOTIVATION

In the traditional (local) approach, strength of a body in an analyzed point
y is characterized by the value of some function of stress tensor components
at the same point without consideration of the stress state in neighbouring
points. The local strength condition can be represented e.g. in the form

floi;(y)) < oo,

where f is a material function and o, is a material constant. It gives a good
description of experimental data when macro-stress variations are small enough
on dimensions of the order of the material structure scale.

There are several problems of strength and fracture mechanics that can
not be be solved (or it is tedious to solve) by use of traditional strength condi-
tions. Such problems include the strength small-scale effects, strength descrip-
tion of bodies with singular stress concentrators (corner points, intersection
of interfaces) generating singularities with different exponents, the problem of
unification of strength conditions for bodies with smooth and singular concen-
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trators, and so on. Some examples of such the problems are given in Fig.1-3.

An example of the strength small-scale effect is presented in Fig.l. An
infinite elastic plate with a circle hole is considered that is loaded at the in-
finity by a uniform traction q. It is known from the elasticity theory that the
maximum stress is independent of the hole radius r, is equal to 3¢, and the
maximum is realized in the boundary point y. The plate strength evaluated by
use of the strength condition 09y < o, is then independent of the hole radius
and is equal to one third of the strength g. of the plate without hole. How-
ever appropriate fracture tests date (pointed out schematically in the figure)
for plates with small holes show that the plate strength depends on the hole
radius.

Another example of the strength small-scale effect delivers the same plate
but now with a crack instead of a hole, Fig. 2. From linear elasticity one
obtain the value for the stress intensity factor K;(y) = ¢v/7l. From the linear
fracture mechanics one have the strength condition K;(y) < Kj.. Using these
two expressions, we get the theoretical dependence of the plate strength from
the crack length (the solid line), according to which the plate strength tends
to infinity as the crack length tends to zero. But the experiments for short
cracks show that the strength value tends to a finite value.

The same plate but now with a diamond-shaped hole is considered in the
third example (Fig. 3). According to the linear elasticity we have the following
stress behavior near the corner points: o;(p,8) ~ Ki(y; a)p™ " fi;(0; @). It is
impossible to estimate the strength of bodies with such the stress behaviour
neither by the traditional local strength condition nor by the local linear frac-
ture mechanics condition. In principle, one can try to use the strength con-
dition Ki(y;v) < Kic(7), which is analogous to the linear fracture mechanics
condition. However, one must determine then the critical strength intensity
factor K. experimentally for each v, it means, for each angle o, what is rather
tedious and expensive. Moreover, the same problems occur with the small-scale
effect as for short cracks or small circular holes.

These three examples show the necessity of a more general strength theory.
Such a theory should describe the small-scale effects and be applicable to bodies
without cracks, with cracks as well as with other singular concentrators. This
conditions meet the non-local strength theories.

FRACTURE QUANTA AND NON-LOCAL STRENGTH CONDITIONS

In papers Mikhailov (1), (2), a functional approach to non-local strength con-
ditions and fracture criteria is presented. We give in this part the basic notions
and ideas of this approach with some modifications.

196



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

Definition 1. A body (material) D will be called discretely fracturable if
fracture in it can occur at once on a point set F(D) called fracture quantum.
The set of all fracture quanta of a body D will be denoted F(D). O

In a given body D, each fracturing stress field o;;(z) can have, generally
speaking, its own fracture quantum. Fracture quanta can differ in position,
orientation, form, and dimension. One and the same body point can belong to
different fracture quanta. Micro—cracks of a characteristic dimension, micro—
pores of characteristic radius and so on can figure as fracture quanta. If isolated
body points are fracture quanta then discrete fracture degenerates into point
fracture. A geometrical classification of the fracture quanta sets and notions
of the homogeneous, isotropic and weakly sensitive to boundary quanta sets
are given in (2).

Definition 2. Let a stress field o(z) be given in a discretely fracturable
body D possessing a fracture quanta set F(D). Then for each (potential)
quantum F'(F(D)) there is a parameter X'(o; F') > 0 such that the stress field
a'(z; F) = M(o; F)o(z) causes no fracture of F. The supremum of X(o; F) for
the the field o(z) given and for the quantum F considered will be called the
functional safety factor A(o; F'). If A(o; F') > 0, then the stress field o(z) will
be called admissible for the quantum F’; if A(o; F) = 0, then inadmissible. We
will call the set consisting of all admissible stress fields for a quantum F' the
admissible stress set S(D; F'). O

In addition to the safety functional A we introduce also an (over)load func-
tional A(o; F') := 1/A(o; F). It follows from Definition 2 that ) is a positively-
uniform functional of the order -1, A is a positively-uniform functional of the
order +1. Both the functionals A and A will be called also strength function-
als. The strength functionals are characteristics of material and, in general, of
body form.

It follows from Definition 2 that the non-local strength condition for a
(potential) fracture quantum F' can be written in the two equivalent forms:

Mo; F) > 1, A(o; F) < 1.

The corresponding non-local fracture criterion can be written in the two equiv-
alent forms:

Mo;F)=1, A(o;F)=1.

The global strength condition, i.e. the strength condition for the whole body
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can be then written in the two equivalent forms:

;xél;g(a;F)>1, zlé}F)lA(a;F)<l.

The global (body) admissible stress set is S(D) = NperS(F).

The corresponding definitions and non-local strength conditions for the
point (not discrete) fracture one can get regarding F' as a body point. The
infimum, supremum and intersection must be taken over all points of the body
D considered. Notions of homogeneous, isotropic weakly sensitive to boundary
and finitely non-local quanta strength functionals are given in (2).

Example of non-local strength conditions. We present here, as an example
of non-local strength condition of the discrete fracture for a plane body, the
strength condition based on average stress over a the fracture quantum (a
generalized form of the condition used by Neuber (3), Novozhilov (4) and
other authors). The fracture quanta set F in the condition consists of linear
segments having a characteristic length d and being also the domains of non-
locality. The strength functional is finitely non-local with internal domains of
non-locality, strength homogeneous and isotropic.

Ay(o; F) = max[Ay(0; F),00 <1, Ayy(o; F) = dl / OnndF.

10¢ JF

The admissible stress set S(F) coincides with the space L;(F') of functions
integrable over F. Here o, and d are material constants; onn is the normal
stress component on the segment F. Some other examples are presented in

1), (2)-
EXISTENCE AND UNIQUENESS
OF THE FUNCTIONAL REPRESENTATION

Existence. Suppose a non-local fracture criterion for a quantum (or a point
or a body) is written in the form L(c) = 0, where L is a functional such as
L(0) # 0. Let the material considered be such that its fracture is independent
of the stress field history. In particular, if a stress field o is fracturing, then the
stress field Mo is also fracturing for any constant A’ > 1. Thus the criterion
written means that a stress field ¢ is not fracturing and causes the strength
stable state, when there is € > 0 such that L(No) # 0 for all X € [0,1 + ¢]
(we denote the set of such the stresses S,). On the other hand, a stress field
o causes stable fracture when L()\'o) = 0 for some A’ € [0,1). The boundary
between these two sets is the set of critical or unstable stress fields; a stress
field o belong to this set when L(XN¢) # 0 for all X' € [0,1) and, for any € > 0,
there is A € [1,1 + €] such that L(X¢o) = 0.
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We should show that there is a positively-uniform functional A of the
order +1 such that S, coincides with the set of stress fields o meeting the
inequality A(o) < 1. Really, using Definition 2 and the fracture criterion in
the sense of the previous paragraph, we obtain the safety functional A and
then the overload functional A having the properties desired.

To get the value of the functional A(c) for any o practically, it is necessary
to calculate the roots A* > 0 of the equation L(A*o) = 0 and to assign A(c) =
1/inf A* when there are such roots, or to assign A(c) = 0 when there are no
such roots.

Uniqueness. Suppose, there are two positively-uniform functionals A; and A,
of the order +1 such that their admissible stress sets S; and S, coincide and
the sets ST and Sj of stress fields, meeting the corresponding equations

AI(U) = 17 AZ(U) = 17

coincide too. We will prove that A;(o) = Ay(o) for all admissible stress fields
.

Really, let o € Sy, then A,(0) < co. Suppose at first, A,(o) # 0. Then
A, (ko) = kA(o) for any number k > 0. Let k = 1/A,(s). Then A, (ko) =
kAy(o) =1, i.e.,, ko € S} = S and Ay(ko) = 1. It means, kA,(c) = | and
Ay(0) = Ay(0).

Let now A; (o) = 0. Suppose that A,(c) # 0. Repeat then the proof of the
previous paragraph interchanging A, and A,. As aresult we get A;(0) = A,(0).
We obtain the contradiction proving the statement.
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Figure 1. Dependence of the plate Figure 2. Dependence of the plate
strength ¢ on the hole radius strength q on the crack length r
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oii(p,0) ~ Ki(y; a)p™ ") fi;(6; )

Figure 3. Plate with a diamond-
shaped hole
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