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NUMERICAL PATH INDEPENDENT INTEGRAL IN
DYNAMICS FRACTURE MECHANICS

M. Attigui* and C. Petit*

A theoretical and numerical analysis of a new path indepen-

dent integral in fracture dynamics is presented in this pa-

per. For the analysis of fracture problems Destuynder (1983)

proposed the Gg-integral method, based on the Rice J-integral.
We have generalized this method for dynamic fracture appli-

cations. Numerical tests give us accurate results of identifica-

tion of the dynamic stress intensity factors.

INTRODUCTION

Path independent integrals are well known in fracture mechanics, and spe-
cific methods have been developed for the identification of the stress inten-
sity factors but they are only valid for static fields. Elastodynamic path-
independent integrals have been investigated by several authors. J-integral
(1) was extended by Bui (2) for Elastodynamic crack problems. It is worthw-
hile to point out that Bui and Proix (3) have used the same approach to esta-
blish the T-integral and A-integral for thermoelasticity fracture problems. In
this paper, we generalized the Gg-integral method (4), for dynamic fracture
problems. The numerical modelling is applied to stationary problems (the
crack-tip velocity is zero). Our theoretical and numerical approach is valida-
ted by comparison with the kinematic method. Several numerical applications
are shown to demonstrate the accuracy and the reliability of this method for
the identification of the dynamic stress intensity factors. The present method
is computed with various paths to demonstrate the path-independence of this
integral.
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FORMULATION

The conventional J-integral has been extended by Bui (2) for Elastodynamic
crack problems. When the crack lips are loaded, this integral becomes :

1 1 . ..
Jd(t) = /{5 Tiiu; i1 — oijui — Epu,-uiéjl — apiui b1 njds
r

d
+ —/ p iuiy dS — / oij nj ui ds
dt A(T) L

where I'is an arbitrary contour around the crack-tip joining two points on the
opposite of the crack lips. A(T') is the domain enclosed within the contour
I'. 0;; and u; are the components of the stress tensor and displacement,
respectively. & = Qu;/0t and p is mass density. a is the crack-tip velocity and
n; is the unit outward normal to the contour I'. L is the total of the two
crack surfaces. ds is the line infinitesimal and d is the area infinitesimal.
We defined the notations :

(1)

il 1 .. i
pjan; = [5 Tij Wij 01 = Cijuin = 5p i i $1 =@ p i uin 6 J n; (2)

Consider a crown around the crack-tip delimited by two contours I',T"and a
field 0?, such as (; = 1,60, = 0) inside the crown and (6 = 0,8, = 0) outside
(cf. figure 1). We can write p;; = pj.x 0k on the contour I'. The line integral
on I' is converted to a line integral on the closed contour 8V due to 6; = 0
on I''. 9V is the closed contour around the crack-tip, constituted by the two
contours I', I' surrounding the crack-tip and the two parts (4B, A'B'") on
the crack surfaces (figure 1). The equation (1) can be written as :

d ;
Gg(t) = AV —pj,knjokds + E - puiuikade - L a',-]-n]-u,-'kads (3)

Applying the Gauss-Ostrogradski theorem to equation (3), results in :

d .
Gg(t):/ —(pj,kj0k+pjk0k,j)ds+—/ pu,-u,-,kade-/aijnjui_kﬂkds
v dt Jar) )
(4)

The surface integral on A(T) is the difference between the total surface and
the surface of the crown (A(T') = Q — V). The equation (4) becomes :

d . d .
G(t) :/‘,—[pj,kj n apu,-u,-,k]akder/n[—p,-,kek,j+ apuiui,kgk]ds

/ (5)
— a,-]-njui'kﬁkds
L
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After the development of the previous integrals, using equation (2),
the dynamic Ge-integral is given :

1 1 . d .
Ga(t) = / {_if"ijui,jek,k + oijui ke, + E,Ditiuigk,k + apuiui,kok}ds
Y

= ai'n-ui,kOkds
/L 3" (6)

The well-know relationship between the stress intensity factors and J-integral
is establish by Irwin and extended in dynamic problems by Bui (5) as :

Gi(t) = J4(t) = % [#1(a) (k) + f”("’)<K‘Iif(t))2] ™

where E' = E/(1 —v?) and E' = E for plane strain and stress conditions,
respectively, E and v are Young’s modulus and Poisson’s ratio, respectively.
fi(a) are the crack-tip velocity-dependent functions (Freund (6)). In this
paper, the numerical modelling is applied to stationary problems so that the
crack-tip velocity is zero (@ = 0) and (fi(@) = 1) in the previous equations.

NUMERICAL RESULTS

Numerical modelling was carried out, using finite elements code CASTEM
2000. The Gg-integral is developed in the code as a procedure. The static
integral (the two first terms in equation (6)) was implemented in the code by
Suo (7). To valid the Ge-integral method, the numerical results of this last are
compared to the results determined by crack opening displacement (COD)
method. This method is a local approach to evaluate the stress intensity
factors. The Ky and K factors are proportional to the crack opening,

(k + 1)

2 (b + 1)
2w p?

[u2)? = Kj and  [wi]® = Kjg (8)

2 p?

where k = 3 — 4v in plane strain condition or k = (3 —v)/(1 +v) in plane
stress condition.

We consider a Compact Compression Specimen (CCS) represented in figure
2. The CCS is used previously by Rittel (8) and Maigre (9) for experimental
studies. This bar is loaded dynamically in the vertical direction by uniform
tension P(t) = 400 MPa with heaviside-function time dependence. The boun-
dary conditions given correspond to plane strain loading. The material of the
strip is linear elastic with Young’s modulus E = 210 GPa, Poisson’s ratio
v = 0.285 and density p = 7800kg/m®. The finite elements mesh, used in
this example, is shown in figure 2.
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The normalized mode I dynamic stress intensity factor K} = K;/P(t)\/7a is
plotted against ¢ in figure 3, (time step At = 0.5u8). The numerical results
obtained by COD method are also plotted in figure 3. However the value of
the present method are in excellent agreement with those obtained by COD
method. This last are lightly lower.

To verify the path-independence of the present method, five different
crowns enclosed the crack-tip are selected. The normalized mode I dynamic
stress intensity factors K} obtained for the five crowns, (at the times ¢; =
80pus, t = 100us and t3 = 120us) are shown in figure 4. These results clearly
demonstrate the path-independence of the present method.

CONCLUSION

A theoretical formulation of the dynamic Gg-integral is presented. This inte-
gral is very interesting to obtain the stress intensity factors in fracture elasto-
dynamic problems. To test the present method, a procedure is implemented
in the finite elements code CASTEM 2000. The Go-integral is computed over
various crowns. The results clearly demonstrate the path-independence of the
present method. Different examples are tested, comparisons are made against
results obtained by other numerical methods (COD methods). The numerical
results demonstrate the accuracy and the reliability of the present method.
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Figure 1. Domain and contour around

the crack-tip
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Figure 2. Geometry and finite elements
mesh of the CCS
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Figure 4. Normalized factor K} against
the crowns
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