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NUMERICAL MODELLING OF CRACK GROWTH IN
DUCTILE DAMAGING MATERIALS

M. FEucHT®, H. BAAsER™, J. HOHE™, D. Gross®

Ductile crack growth under quasi-static conditions is examined
numerically using a constitutive model accounting for damage
effects. The continuum model is applied by two different me-
thods. In the first concept, the elastic-plastic crack growth
problem is solved by limiting the damage zone to a narrow
strip ahead of the crack tip and introduction of a Dugdale-
Barenblatt-type cohesive zone model. In the second concept
the damage model is implemented directly into a two dimen-
sional elastic-plastic finite element for the plain strain case.
Both concepts are applied to examine the ductile crack growth
in a CT-specimen. A good agreement of the numerical results
with experimental data available in literature is observed.

INTRODUCTION

The specimen size and geometry dependence of the crack resistance curves is a
well known problem in the analysis of ductile crack growth. To deal with this
problems several concepts have been developed in literature. Macromechani-
cal approaches introduce additional fracture parameters while micromechanical
concepts attempt to incorporate the failure process into the constitutive de-
scription of the material. Therefore no external fracture criterion is required
in this kind of approach.

One of the most successful damage models is the model originally presented by
Gurson (2) which describes the ductile failure process by nucleation, growth
and coalescence of microvoids. In the present study this model is employed in
modified form as given by Tvergaard and Needleman (7).
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GURSON’S DAMAGE MODEL

Gurson’s model in modified form as given by Ref. (7) uses the yield condition
9l . O kk *12
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where
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Here, o;; denotes the macroscopic stress tensor, o, the macroscopic equivalent,
stress, o the actual yield stress of the matrix material, f the real and f* the
effective void volume fraction respectively; q;, f. and f, are material parame-

ters. The void volume rate is assumed to consist on the growth of existing
microvoids and the nucleation of new voids:

F=0-fen +Ae (3)

where a dot denotes the partial differentiation with respect to time. The first
term in eq. (3) can be derived from the condition of plastic incompressibility
of the matrix material, while the usual statistical approach is used for the
nucleation term (see Tvergaard (6)):

(2)
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A= o
Here €/ denotes the equivalent plastic strain rate of the matrix material and
fw, €n, Sy are material parameters describing the nucleation of microvoids.
The total plastic strain rate is splitted additive into an elastic part governed by
Hooke’s law and a plastic part for which an associated flow rule is assumed. An
evolution equation for the equivalent plastic strain rate of the matrix material
is obtained by taking into account that the macroscopic and microscopic plastic

work rate must be equal:
.pl
pl __ I (5)
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Finally, a Power-law hardening matrix material is adopted.

NUMERICAL CONCEPTS

Cohesive Zone Formulation

According to Zhang and Gross (8),(9) the constitutive equations (1) - (5) can
be rewritten after some manipulations by introduction of a macroscopic equi-
valent plastic strain rate é?' defined in the usual way (see e.g. Ref. (8)). Using
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€?! and the condition that the macroscopic plastic work rate must be equal to
the microscopic plastic work rate, a system of ordinary differential equations
is obtained, which can be simplified under the assumption of equivalence of
micro- and macroscopic strain to the following cohesive stress-strain relation-
ship (see Ref. (9) for details):

1
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where
1 for plain stress _ { 1 for plain stress
= 72,\/7 for plain strain > ™/ = | /3 for plain strain

The obtained constitutive equations (6),(7) are now implemented in one-dimen-
sional finite spar elements which are used to define the cohesive zone in a
finite element discretization. The area outside of the cohesive zone is discreti-
zed by elastic-plastic triangular displacement elements with biquadratic shape
functions. The material in this area is assumed to be governed by standard
non-damaging v. Mises .J;-plasticity with power-law hardening material.

Direct Finite Element Implementation

In contrast to the cohesive zone model where a simplified one-dimensional
version of the Gurson model is used, the damage model is now implemented
directly into plane strain finite elements. Here, the key point for the imple-
mentation of the constitutive equations (1) - (5) is the choice of the integration
scheme. Efficient schemes are needed, which are fast and accurate. There are,
in general, explicit schemes (cf. Ortiz (4)), which have the advantage of easy
derivation and implementation. On the other hand they are instable and very
small time steps are necessary to obtain an accurate solution. Consequently,
implicit algorithms became very important in the last years because of their
stability and good accuracy even for large time steps (cf. Aravas (1), Zhang
and Niemi (10)). Simo (5) showed that the multi-step algorithms in general do
not cause much improvement in the accuracy of the solution but have a minor
range of stability in comparision to single-step schemes. In Ref. (10) the ge-
neralized mid-point algorithm for the gurson model is examined in particular
and the Euler backward algorithm is found to be the best choice.

For these reasons the implicit Euler backward scheme has been chosen in the
present study, in which the problem to be adressed is that of updating the

5 i 5 .
known state variables ¢, e, oy, [ and ehy on the actual time increment. For
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this purpose it is useful to introduce two scalar variables

1 3
P= =30k q= \/55“3“’ (8)

where s;; denotes the stress deviator. The Lagrange multiplicator rate 7 is
splitted into a pressure dependent and a part independent of the hydrostatic

stress 90 Py
Asp B —"/—a; Asq = ’)"5(; (9)

so that all variables of the equation system (1) - (5) can be expressed in terms of
four unknown increments Ae,, Aeq, Af, Aehy. The following nonlinear system
of equations, which has to be solved on each Gaussian point, is obtained:

0= ¢ (10)
ad 0P
0 = Aepg(;-FAé'q—a‘l; (11)
0 = Af={l—{)fe;—Ay (12)
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The system of equations is solved by Newton’s method, where the consistent
tangent moduli are derived following the suggestions in Ref. (1) and (10). Du-
ring the constitutive calculations, where stress and state variables are updated,
the total strain is known. The elasticity equation yields

O'E;'At = C,‘jm(Eu'At - Ei.’lp) — K Aeybi; — 2G Aggni; (14)
where n;; = 3si;/2q and K,G being the elastic bulk and shear modulus,
respectively. The derivation of the consistent elastoplastic tangent moduli
requires the exact linearization of eq. (14) as:

on;;
do; = Ciuder — Kd(Aey)8i; — 2Gd(Ae)ni; — 2GAe, az idey  (15)
kl
where On;;/dey is given by
on;; G o
65,:, = (1" (36;k5j1 — 6,']'6k1 == 2",']'"“) (16)

and d(Aeg,),d(Ag,) can be determined by the solution of a linear system of
equations as given by Ref. (1) or (10). Finally the following explicit expression
for the consistent tangent moduli is obtained:

6(7,']'

Ok

=dy 66k + dy 6851 + d3 nijnp + da ijnig + ds N6 (17)

with the scalar values d; — ds as defined in Ref. (10).
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RESULTS

The methods presented in the previous section are applied to examine ductile
crack growth in a CT-specimen (see Fig. (2)). The upper half of the specimen
is discretized as presented in Fig. (1). The material parameters are chosen as
suggested in Ref. (3). Exemplary the displacement vy of the crack surfaces on
the load line is plotted as function of the crack propagation Aa in Fig. (3).
Experimental results (Ref. (3)) have been added for comparison.

A good agreement of the results obtained by the different numerical models
presented in this paper can be observed as well as a qualitative agreement
to experimental data. The agreement of the curves resulting from the two
numerical approaches can be explained by the fact that significant damage of
the material occurs only in the narrow zone ahead of the crack tip. Therefore
it is demonstrated that the rather simple cohesive zone model used in the
present study is able to simulate the physical effects of crack propagation in
a CT-specimen. Nevertheless, for problems in which the crack propagation
path is not known a priori, a more general formulation of the damage model
is required as presented in the second approach of this study. The remarkable
advantage of the cohesive model concerning the needed computing time has to
be emphasized.
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Figure 1: Discretization of CT-Specimen
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Figure 2: Geometry of CT-Specimen Figure 3: Displacement vy vs crack pro-
(w=50mm, a=29.5mm) pagation Aa
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