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NUMERICAL METHODS IN ELASTO-PLASTIC
FRACTURE MECHANICS

D. Baouch *, A. Vergne*

A lot of cracked materials have an elasto-plastic behavior;
so, the linear elastic fracture mechanics is generally not ap-
plicable, due to the fact that the plastic zone near the crack
tip is large, mainly when the loading is increasing. In this
paper, a global method based on nonlinear analysis with two
numerical approaches is developed. The results are compared
with those obtained by Irwin method ; this last one gives ac-
curate results when the intensity of loading is not very high,
corresponding to a confined plastic zone. For higher loading,
global nonlinear methods are more accurate.

INTRODUCTION

The linear elastic fracture mechanics (LEFM) is based on the elastic behavior
hypothesis of cracked materials. In this case, several characteristic parameters
can be determined : the stress intensity factors K; and the strain energy
release rate G (Irwin (1), Griffith (2)). But, when the mechanical behavior is
elasto-plastic with a significative plastic zone size, the LEFM is not applicable,
due to excessive yielding. In this case, models were established by several
authors taking into account a nonlinear elastic behavior law instead of an
elasto-plastic one. These methods are used only if the load is applied with
increasing steps. The present report compares the results of an approached
method (Irwin (1)) with two calculation results based on nonlinear analysis.

ENERGY RELEASE RATE G

When the plastic zone size is small, compared to planar dimensions, several
approached methods based on LEFM could be found in literature. Among
these different solving ways, three of them are more classically used :
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e In the first one, Dugdale (3) has corrected the plastic zone by an approa-
ched loading, corresponding to the yielding stress on an effective distance at

the crack tip and then, he determined the crack tip opening displacement &
(CTOD) of real crack.

o In the second one, Eftis and Liebowitz (4) use the displacement-load curve
and formulate this one by Ramberg-Osgood model. Then, they calculate the
equivalent energy release rate by the nonlinearity factors.

e In the third one, Irwin (1) uses a correction of the plastic zone size by
application of the LEFM and considers the redistributed stresses near the
plastic zone. The stress field outside the plastic zone is similar to the elastic
stress field found with equations for artificial a. = a + 7, crack length. The
term a. corresponds to an artificial crack with its tip near the center of the
plastic zone (see figure 1); ro is the radius of the plastic zone defined as

follow :
1 /(K\®
o= 3n(7) ")

R, is the yielding strength and K is the stress intensity factor. If K = Fo/ma,
the modified value K. becomes :

K. = Foy/m(a+715) (2)

F is a dimensionless function F(a./b). So, the equivalent G is expressed by :

K.’
—— 3
- 3)
Among those methods, the Irwin approached method was chosen and nume-
ricaly compared with nonlinear methods allowing the calculation of energy
release rate. Dugdale and Irwin methods could be applied only when they
verify the following hypotheses :

GIrw =

- elastic, perfectly plastic behavior,

- stress plane hypothesis,

- confined plastic zone,

- fracture in mode I.

When the plastic zone size is large and the material has an elasto-plastic
behavior with strain hardening, those methods are not used. Several authors

(Rice (5), Hutchinson(6), Rosenberg (5)) have calculated fracture parameters,
G and J, for a nonlinear behavior. Those parameters correspond to the loss
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of potential energy of the cracked field during a unit crack propagation. G
may be written as :

o ()

where m = W, + W,,, is the total potential energy (W, is the strain energy of
the material and W,,, is the energy of the external forces) and a is the length
of the crack. The numerical Gaiss and G methods permit us to resolve the
global methods presented previously.

G =

Gdiff Method

In this approach, based on the finite difference method, G is obtained
from the variation of the total potential energy during the extension Aa. It
can be written as :

Blgipp = _lr‘(ﬁ,iAA“i\_”(‘L) (5)

G Method

This global method, using an arbitrary vector field, is founded on a path
independent integral. This field varies between (0,1) on the external path and
(1,0) on the internal path. The formulation of this method developed by Suo
(7) is :

GO = / [—Wok,k + oijui k0, ;]dA (6)
A

A is the area delimited by the two paths, and W = foe 0;;de;; is the strain
energy density for linear or nonlinear elastic materials.

NUMERICAL RESULTS

In order to validate the previously presented methods, we consider a center-
cracked plate, with the following dimensions : @ = 50 mm , b =100 mm, and
h = 300 mm. The behavior law is elastic perfectly plastic, with a yielding
strength R, = 400M Pa and a loading varying between 20 and 180N /mm?.
The fracture is in Mode I and it is a plane stress analysis (see figure 2). In
this example, the parameter of fracture G is calculated by different methods
presented previously, using the finite elements code CASTEM2000 developed
by CEA. Energy release rate calculated by Gaifs method depends on the
virtual crack extension Aa. In our case, the value of Aa is equal to 1/100 of
the element length near the crack tip.
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TABLE1 - Values of G using different methods

Loading GO(ela.) Grrw(pla.) Go(pla.) Cv’di',ef(pla.)ﬁ
N/mm? MPa.mm MPa.mm MPa.mm MPa.mm

20 0.440 0.439 0.440 0.440

40 1.760 1.762 1.760 1.761

60 3.961 3.999 3.987 3.986

80 7.041 7.199 7.173 7.178

100 11.002 11.433 11.418 11.440

120 15.843 16.800 16.858 16.921

140 21.564 23.432 23.768 23.887

160 28.165 31.505 32.669 32.897

180 35.646 41.247 44.997 46.380 J

G, calculated by G method, depends lightly on the path considered when
the plastic zone is large (Baouch (8)). The results listed in the previous table
present some differences between the various methods when the loading is
increased. The values of energy release rate calculated by Irwin approached
method are very close to those of G8 and Ggify methods. Irwin method is
reliable as far as the plastic zone is confined at crack tip. But, when this
area becomes important and tends to the nearest free edge (see figure 3),
this method does not give satisfactory results. It was also noted, according
to the values of G@ obtained in elasticity and in elasto-plasticity as shown in
column 2 and 4 of table 1, that the plastic zone appears for a loading near
from 60N /mmz. The values of G and Ggifs are not so different at each
loading step. It can be noted that the value of Gy is similar to the values
obtained by G8 and Ggiss methods until loading near than 140N /mm? ; after
that, the large plastic zone induces a lower value by such a method because
the confined plastic zone hypothesis is not respected and, moreover, Irwin (1)
considers a circular plastic zone instead of a butterfly wing shape.

CONCLUSION

The previously methods allow the computation of energy release rate G. The
advantage of the approached method of Irwin resides in elastic calculation
without important differences, compared to G0 and Gaifs methods, while the
plastic zone is not very large. This approach can be used when the hypotheses
presented previously, are respected. Meanwhile, Gaifs method allows to take
into account the elastic-plastic behavior of the materials and determines G
value by integration on the total structure. Its major advantage is in the fact
that the calculation is independent with regard to the plastic zone position.
The G0 method is more economical than Gqif s method because it calculates
C in only one configuration. Its accuracy is correct.
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SYMBOLS USED

7o = radius of the plastic zone
R, = yielding strength (MPa)
K = stress intensity factor (M Pa./mm)

a = crack length (mm)

F' = dimensionless function

G = energy release rate (MPa.mm)

W = strain energy density (MPa)

(1)

(2)

3)

(4)

(6)

(7)

(8)
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Figure 1 Dimension of the plastic zone : Mode I (Irwin)
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Figure 2 Center-cracked plate Figure 3 Plastic zone size (200 MPa)
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