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NON SINGULAR TERMS IN CRACK TIP STRESS DISTRIBUTION FOR
PLANE PROBLEMS

M.Beghini (°), L.Bertini(°), F.DiPuccio(°)

The effect of non singular terms in the elastic stress field near the
crack tip for a two dimensional problem under Mode I loading is
discussed. It is shown that the knowledge of the Weight Function
and of the T-stress allows to evaluate the crack tip stress field with
good accuracy not only on the ligament but in any position near
the tip for any stress components. As an example, the central
cracked panel under uniaxial tension is analysed and the effect of
non singular terms in the shape of the plastic zone is shown.

INTRODUCTION

In the classical approach to Linear Elastic Fracture Mechanics (LEFM) the stress
distribution around the crack tip is usually assumed to be defined by the Stress Intensity
Factor (SIF or K), i.e. by the first -singular- term of the series expansion constituting
the exact solution of the crack problem. However, experience recently gained on
some special cases (quite important for practical applications as small or pressurized
cracks) indicated that the SIF alone could be not sufficient to predict the crack
behaviour. In those conditions, a more accurate characterization of the stress
distribution nearby the crack tip is required which includes some non singular terms
as shown by Sumpter and Forbes (1) and Romeo and Ballarini (2).

For a general fracture problem, such accuracy improvement can be obtained by
numerical (e.g. Finite Element) models, which may be quite expensive and time
consuming. In the present paper, a simple approximate method for evaluating the
complete stress tensor for mode I loading is presented. The following five terms series
expansion for the stress components near the tip is assumed:
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where a, and /;©) are scalar values and geometrical functions respectively to be
determined, and other symbols are indicated in F ig. 1(a).

FUNDAMENTALS

Let us consider a plane body carrying a crack having length g under loads and boundary
conditions producing Mode ] loading only. The normal stress component acting on
the ligament will be indicated aso , (x,a). The Wei ght Function (WF) Method allows
to evaluate the SIF, K(c), for any virtual crack of length ¢ (in particular for ¢ > a)
integrating the WF h(x,c) multiplied by the nominal stress acting in the uncracked
body, subjected to the same loading and boundary conditions:

K(c) = jo o ,,(x.0) h(x,c) d )

As observed by Beghini et al. (3), the SIF may also be obtained by integrating the
stress distribution acting on the ligament ahead of the crack tip ( Fig.1(b)):

K(c) = J‘de(x, a) h(x,c) dx 3)

Once the WF is known, the above eqn. (3) can be applied in order to evaluate the
normal stress distribution on the ligament ahead of the crack. According to eqn. (1)
(where r=x-q and 0=0), the following relationship holds:

c_yv(x,a)=%+az,/(x—a)+a4 ,/(x—a)3 (4)

being S (©)= Ju30)=0 Substituting eqn .(4) in eqn.(3) the following equation
can be obtained:

e K .
K(c)z‘[[#‘z)—a)+az,/(x—a +a,/(x-a) Jh(x,c)dx (5)

where K(c) is calculated by eqn.(2) and a,and a, are unknowns. Eqn. (5) can be
solved in closed form or numerically depending on h(x,c) by taking at least two crack
lengths ¢ (i.e.: ¢, and ¢, ). It may be observed that the crack length values, ¢,, required
for evaluating the unknown parameters must be adequately chosen with reference to
the extension of the region ahead of the tip where the stress has to be reproduced.
Hence, of the five terms indicated in eqn.( 1), the first is determined by K(a), the third
and the fifth can be calculated by the method described above (i.e. by the knowledge
of the WF). The remaining coefficients aand a; are still unknown as they’re
independent from the o »on the ligament. In particular, g, is related to a uniform
stress field along the x axis (affecting the O  component only) known as T-stress.
For many geometries, several collections of T-stress values are available in literature,
as those provided by Larsson and Carlsson (4) and Sherry et al. (3). Nothing can be
said about the value of a, which produces no influence on & w (being £ 1(0)=0)
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and affects the other stress components (being fea(0)=cosB and f,,,(0) =sind).
On the contrary, owing to the expressions of f;,(0) and J;.4(8), the knowledge of
a,and a, allows the evaluation of the related stress components also in other positions

near the crack tip, as illustrated in Fig.2.

A better description of &, in the region near the crack tip by means of a limited
number of terms is obtained by adding constant and linear terms to the expression (4):
K(a)

Gw=—zn(ﬁwtbl+al,/(x—a)+b3(x—a)+a4 (x-a)’ -

These two terms should be zero if a rigorous power expansion were considered,
nevertheless they allow to better reproduce the local stress distribution and to improve
the accuracy of stress field evaluation near the crack tip. The stress components
associated to eqn.(6) may be expressed by the following equation:

S, = A 1,00+ b, (0)+a,1,,(O)+ a7 £,,(0) +byrg, (0)+a, V¥ £, 0)7)

where the term containing a, was neglected due to the impossibility to evaluate the
coefficient. By the same method illustrated above it’s possible to evaluate b,, a,, b,
and a,, i.e. by considering more than two crack lengths ¢ in eqn. (5). In this case
S5 (©) (with m=0,1,2,4) are the same functions which appear in eqn.(1) while 5, and
by multiply two new functions g,,(0) and g, ,(6) which were determined by solving
the elastic problem for a semi-infinite body loaded on half boundary by constant and
linear stresses respectively. By using the Muskhelishvili complex variable approach
(6) it can be shown that the respective complex potentials are:

m—i-lnz —i-z(1
,(z):? ,(2)= e (§+zn+lnzj 6))

where z =y ¢" and i is the imaginary unit.

APPLICAT

With reference to a Central Cracked Panel (CCP) in tension, a comparison is made
between the stress distribution due to the singular term and that obtained by eqn.(7).
The example is related to a panel width of 80 mm carrying a crack having a total
length 2a=8 mm and the applied tension ¢ ;=1 MPa. The approximate WF proposed
by Wu and Carlsson (7) is considered and the analysis is performed in the zone
a <c<1la.An FE analysis was used as reference. The accuracy of this numerical
evaluation was tested by analysing the equivalent Griffith problem with a similar FE
model. In this case the FE solution gives K and stress values with errors less than
0.1% as compared to the theoretical solution. In Fig. 3 a comparison between the
stress evaluated by different methods near the crack tip for the CCP is shown. It can
be observed that the proposed method differs from the reference solution of quantities
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comparable to the accuracy of FE solution. In Fig. 4 the loci of constant Mises stress
G, are plotted for two ratios & « | © ¢ for plane stress and plane strain conditions. In
those scales present solution s not distinguishable by the FE which is not reported for
clarity. In this kind of diagram, it is possible to verify the solution accuracy by
considering all the stress components and any position on the plane. These maps can
be considered as an approximation of the near tip plastic zone for a material having
the yield strength G, =0, Itcan be observed that both shape and extension of the
plastic zone is affected by the non singular terms particularly in plane strain conditions.
It is worth noting that the discrepancy is more evident in plane strain in the range
0 e (71: /4, 3n /4) than along the ligament where the singular term is predominant.

CONCLUSIONS

From a theoretical point of view, the power expansion of the function along the ligament
for a Mode I loading crack has no constant and linear terms. This is true for any kind
of loading conditions including uniaxial and bending loading. The stress distribution
far from the crack results from all the other terms of the series expansion. If the stress
has to be obtained in a region not far from the crack tipa five terms series expansion
seems accurate enough to obtain any stress component. These terms can be obtained
on the bases of the WF and the T-stress and for many problems this allows to avoid
complex numerical analyses. The method was developed and applied to a Mode I
loading, however its extension to Mode II is rather straightforward.
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Figure 1 (a) Frame of reference and used symbols; (b) real a and virtual ¢ crack and
stress distribution on the ligament.
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Figure 2 Graphical representation of the functions f, ,(®) (a) and f, (0) (b). Only
0 <0 <n is considered because of the symmetry of the problem.
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Figure 3 Comparison of the o, evaluation using K, Finite Elements and eqn.(7) in
corrispondence of two angles: (a) =0 and (b) 6=n/4 rad.
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Figure 4 Plastic region in plane strain (a) and plane stress (b) conditions: diamonds
indicate the present result and solid line the singular term only.
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