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LIMIT LOAD OF AN AXIALLY CRACKED PIPE UNDER COMBINED
PRESSURE BENDING AND TENSION

J.Desquines*, C Poette*, B.Michel*, C.Wielgosz-t, B.MarteletX

The use of limit loads of structures containing defects is widely
spread in flaw assessment. In the case of an axially cracked
pipe, tension and bending do not contribute to the elastic
opening of the crack lips, but increase the level of plasticity, and
a safe J estimation requires a full expression of the limit load,
including all applied loadings, even when they have no
influence on the elastic J estimation. The aim of the present
paper is to propose a lower bound estimation method for the
global collapse of an axially cracked cylinder, based on the shell
Von Mises yield criterion, under pressure tension and bending.

INTRODUCTION

The collapse mechanism is developed from the study proposed by Kitching (1)
for slots under pressure. The global collapse expression gives accurate J
estimations for surface cracks and over conservative for long through-wall cracks.

The cracked cylinder is presented on figure 1. The limit analysis will be
first carried out for two shells, one with a through-wall defect and the other one
without defect. The yield criterion is the usual shell approximation of the Von
Mises criterion. In our case, it may be expressed in a non-dimensional form as:
n:-—n:no+n§+misl (1)

This relation will be satisfied in each of the two shells.

CYLINDER WITH A THROUGH-WALL DEFECT

The thickness of this cylinder is a, the applied load is 63 and the limit load is
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Q1.4 - Equilibrium equations are given in the following non-dimensional form:
1 Bng * arl
+n,=P (2 $=0 (3) —=0 4 ——= 5
4t o8 . @ = ()ag ()4035 q, 5
static boundary conditions :
®n,=0for@=0and £€[0,]] ©)
* q,(§=0)=0, symetry condition (7)

® n, equilibrates axial loads m,, and n, ®)

on, B a om,

collapse mechanism :

Two principal circumferential regions are created to equilibrate bending,
and three axial crowns for pressure. The collapse mechanism of table 1 is based
on a simple linear distribution of shears and satisfies conditions ) to (7)
mentioned above. A quadrant of the pipe shell has been divided into six regions.

The last boundary condition (8) to satisfy is:

+ -
. b -

. ; Nga — HE
Mg, = siny,, withy, =n———" andy, €[0,n C))
ga 2 a a - a

+
I -

For the lower bound analysis the yield criterion (1) must be complied at

any point of the structure. So this criterion will be satisfied in the most heavily

loaded sections where the collapse occurs.

BE[O,Ya] ee[ya.n]
gefol] ng =0, ng =nz, q: =(*» ng =0, ng =ng, q = (*¥)
mg =[m0 +2p2(«52 -1)]1’: mg =[m0 +2p2(§2 —1)]P:;=

Ee[LB] ne=B/(B‘1)P:'n§=DE‘Q¢=(**) ne=B/(B—1)P:,11§=ng.q§=(**)

B(E-1)-05(8% -1 B(E-1)-05(8%2 -1
m[mw} m[ e--0se -],

£2B ng ___p: . ng =ng mg =(*).q€ =(*")| ng =P: LD =ng Mg =(¥) Qg = (*¥)

(*) mg is evanescent in this region and disappears when £ increases.
(**)q is linked to m; according to equation (5).
TABLE 1- Coll mechanism for the through crack linder.

The two parameters m, and B affect mainly P: , then under pure pressure

conditions we solved the associated optimisation problem:
P:q” ={ Max P: / VE € {0,1',1",B‘} n§ +mz <1 }
(mg€R,B>1)
The values of m, and B that led to this optimal value were interpolated
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with an important accuracy for a parameted pipe geometry p :

m, =0,0186p* —0,2325p° +19979° —2,2701p pef06]  (10)
_ | 1826p™ peloi] (1)
~10,0054p* - 0,0043p° +0,6044p’ — 1,724p +3,0434 p € [L,6]

m, and B will subsequently be taken as the results of (10) and (11).

For the combined loading the yield criterion (1) is a binomial expression
of ng and implies that at any point of the structure:
cp"(l,me,ne) <n, <@ (I,m,n,)

As ng is not a function of £ we have :
n;= Min ¢'(Lm,n,) (12) n;= Max ¢ (Lm,n,) (13)

tefortnm) sefort a7}
If n, and P are given, n; and n, are obtained through (12) and (13) and
m_ through (9). The yield surface is then entirely defined.

CYLINDER WITHOUT DEFECT

The thickness of this cylinder is e=T-a, it is loaded with Qg and the corresponding
limit load is GLe . The yield surface of this cylinder is defined by:

*
Nge —Pa /2
Mge = \/1—0.75P:2 sinye, with ye =§ 1+% and y €[0,n] (14)
1-0.75P;

CYLINDER WITH A PART-THROUGH DEFECT
We will assume that axial strengths are divided in both shells, proportionally to
the surface of their section: m; =m_ =m_andn,=n_=n_.
Internal pressure is: p, = (1-a)p;, p, =ap,, a €[0,1].
The o parameter is unknown, the consequences on the limit pressure
parameters are: P, = A P, and P, = A P;.
We will express the whole problem in terms of applied load 6-; and L.
For € =+ or - we have the following values of v% = Lrng for Ein {0,1,1",B'}:
v;(0) = 9" (L,,(m, —2p*)A,7;,0)
vi(l") = ¢*(L,,m,A,m;.0)

v;(l*)=cp“(L,,moAan;,B/(B—I)Aan;) 15
vi(B) =" (L,.(m, +2p’(B-1)A,n;,B/ (B~ DA x})
Equations (12) and (13) are multiplied by L :
vi= Min vi© (16) v;i= Max v;(® a7

{s{o,l“,l‘.s'} 55{0.1‘.1*’.13'}
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Equations (9) and (14) are written in terms of applied load :

Vi -V r/’*’?
Mg = 52 § siny, gt = 1-0.75(Aemy)” sinYe

- (18) —Amp /2 (19
Y =nrg—T—~v§~ withy, €[0.7] Y""% 1+_X§T”/r7_ with v, € [0.7] :
*TvE-vE m L J1-075(A )’

B The solution of this problem is the minimal value of L, such as: for a given
Qr and a given geometry L, and a €[0,1]( A, and A, depend on & )satisfy both
(18) and (19).Equation (18) depends on (10), (11), (15), (16) and (17). A
numerical solution of this problem can be easily obtained.

APPLICATION TO SIMPLIFIED J ESTIMATION

Ainsworth (2) simplified J estimation , is derived through the expression:

I = ]d[S(OYLI) o L

oL, /E 214L

We will analyse an internal elliptical crack submitted to a combination of
wall pressure and bending, there is no axial tension and no lips pressure. The
tensile curve is a Ramberg-Osgood law with n=6. The internal radius is 300 mm,
the half axial length of the elliptical crack is 45 mm ( c is taken as n*45/4 mm),
the crack depth is 15 mm, the thickness is 60 mm, the length of the mesh is 810
mm.

Two loads were applied:

Q) =M0 0 1,104)and Qr2(M) = AML136 0 1,104)

Limit analysis gives : Ly (Qr1) = 1222 Aand L (Qra)=1792 A

All calculated J values were maximum at the deepest point of the crack.
We will then consider these J values. Figure 2 compares finite element results
obtained under Qry and Qr, at the same level of pressure and clearly proves the
influence of bending on J integral. Figure 3 compares for Qpy, finite element
results and simplified J estimations, the accuracy of the simplified method with
pure pressure is very good. Figure 4 compares under Qrathe simplified and
numerical calculation of 7, the simplified method remains satisfactory.

CONCLUSION

This study shows that the global limit load of a part-through wall axially cracked
pipe under wall pressure, bending and tension can be obtained by solving a non
linear system of two equations depending on two parameters. The proposed
collapse mechanism is based on Kitchings (1) one for slots under pure pressure,
with the shell Von Mises criterion instead of the two moment limited criterion.
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Some extensions were necessary to take into account axial loadings. It would be
possible to introduce more optimisation parameters to improve the present limit
analysis. The proposed method leads to accurate and conservative J estimations.

YMBOL ED

R_, R,: mean and internal radius of the cylinder,

X! current thickness of the considered shell,

e =T-a ligament thickness,

p=c/JRa

M, : beam bending moment applied to the top of the x thickness cylinder,

N, : tension applied to the top of the x thickness cylinder,

p.:  pressure difference between inner and outer wall of the x thickness
cylinder,

o,: yield stress limit in a perfectly plastic model,

ng =‘ng/(4Rixcy) ’ st = Nsx/(anmXGY) ’ TIZ: = pxRi/(cyx)

m o P o limit valuesof W, v, 7,

n

Q, = (ugx Vex Tx ) Qix = (mgx Ngy P:) applied and limit load of the x
thickness cylinder,
Lr: fracture parameter such as Qr =L, Q.

& = z/c relative axial position,

M, : longitudinal bending moment per unit length,

N,, Ne: longitudinal and circumferential direct forces per unit length,
Qz: transverse shear force per unit length,

Hg = 4MZ/(°Y"2)’ Rg= NZ/(OYX)’ ng = NO/("Y")’ = QZ/("Y")

B:  extent of plastic region in € direction,
m, : integration constant,
n; ,n,: upper and lower value of ng,

Y,:  neutral axis angle of axial loads on the x thickness cylinder,

(Pe(L,,U,V)=%+S"L2' —'i—vz—'\.l2 €= + oOr -

A =aT/a, A, =(1-a)T/e, a€[0,1]
v; =L,n;, v; =L n;
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Figure 1: Geometry of the part-through cracked pipe. Figure 2: Influence of bending on T integral.
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Figure 3: Accuracy of Js under pressure. Figure 4: Accuracy of Js under pressure and bending
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