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J ESTIMATION SCHEME FOR SURFACE CRACKED PIPINGS UNDER
COMPLEX LOADING: PART I: THEORETICAL BASIS.

Ph. Gilles*

This paper proposes a J-estimation scheme, the KJ95 rule , for
surface cracked cylinders and elbows under combined pressure
and bending. The approach is developed within the frame of the
deformation plasticity theory and attempts to generalise the ideas
of the GE-EPRI method and of the British R6 rule. The results
summarise a large study supported by EDF and achieved by
Framatome. More than thirty three-dimensional elasto-plastic
finite element computations of cracked components have been
completed for developing and checking the formulations. This
first part presents the theoretical foundations of the scheme and
solutions for circumferentially or axially cracked cylinders under
tension, pressure, bending or combined loadings.

INTRODUCTION

Since 1990, the French utility EDF, atomic energy commission CEA and
Framatome are joining their efforts to develop and validate J estimation schemes,
namely for thermomechanical loadings (1). All these schemes are based on the
reference stress technique initially applied to a defect assessment procedure by R.A.
Ainsworth (2). The objective of the present work, initiated in 1994 (3), is to
examine the significance of reference stresses in cracked structures and to develop
a coherent and accurate set of formulae for surface cracked cylinders and elbows
subjected to pressure and bending. The resulting scheme, called KJ95, does not
consider displacement and strain controlled loadings.

The Option 2 of the R6 rule (4) is a general purpose defect assessment route
in which conservative assumptions are made in order to make safe predictions for
crack initiation and growth. The KJ95 rule is merely a J estimation scheme, limited
to mode I primary mechanical loadings, but built to deliver values as accurate as
those obtained via the finite element solutions of the GE-EPRI handbook (5, 6).
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The KJ rule expresses J as a product of J€ by a yield function Y which has
the same expression than in the R6 Option 2 approach. Je may be obtained via
tabulated or fitted influence functions, from the elastic stress field computed on the
uncracked structure. The main basic difference between R6 Option 2 and KJ95
consists in the definition of the reference load considered here to differ from "the
plastic yield load of the flawed structure" (4).

THEORETICAL FOUNDATIONS

Under monotonically increasing proportional loading, the crack driving force J
defines, within the plastic zone, the amplitude of the crack tip singularity. This has
been demonstrated for strain hardening infinite cracked bodies subjected to tension
fields (7,8), and from the local stress-strain fields expression we define the
following averaged strain energy density expression:

® =i—-:;a = %G(n,ﬁ)é(n,e) for a stress-strain law g,, = k 0'3 (1)

n
where I, is a function of the strain hardening exponent n and & and €are
dimensionless function of the polar angle and n.

At least, for the HRR field, the angular dependence of the adimensional
strain energy ® is quite low for strain hardening exponent greater than 3. We
therefore approximate the y function by the non singular ratio:

y=21 = Elvpn @)
J o,
From this relationship, we deduce that:
» The 7y function may be obtained without considering the stress singularity.
¢ The prediction of J from Je requires to select for determining the function 7y
a plastically admissible field, the reference stress being an equivalent stress.
e The reference stress exists only if H does not depend on the strain hardening
or if this dependence is identical whatever the load level (as for the power law
curve). In this case, we have: ¥ = Egg/Cyef

For cracks in infinite bodies, the H function depends on the strain hardening
and may not be finite for a perfectly plastic material (8). For finite bodies, if the
material is perfectly plastic, it is obvious that the y function is given by a limit load
expression. For strain hardening materials, if the field is of tensile type, the stress
and strain distributions remain uniform in the ligament but in three dimensional
cases, the extent of yielding depends on the strain hardening properties. In bending,
the stress distribution is always strain hardening dependent. Thus in most cases, the
reference stress technique is not exact since the relationship between the local yield
and the load may depend of the load level. This is particularly true in the small
scale yielding range where R6 proposes a correction independent of the stress-strain
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law, which is not consistent with the principles of the deformation plasticity theory.
As in the R6 approach, we use the concept of yielding index Lr, but defined here as
the ratio of the primary load to a reference load. In bending the reference load
depends on strain hardening properties (9) and in three dimensional models the
yielding may begin at other locations than in the cracked section. Figure 1 shows,
for a cylinder under bending, the influence of the crack location in the section. The
difference is due to strain hardening and is well predicted by KJ95.

FINITE ELEMENT ANALYSES

Full three dimensional elasto-plastic finite element computations were
conducted on three types of cracked components: one cylinder and two elbows
having the same cross section (Rm =300 mm, t = 60 mm). A basic grid of 17 cases
essentially described in Table 1 has been defined to analyse the effect of the type of
loading and the crack location. For this grid the material characteristics, the crack
shape and size were fixed. The material stress-strain law is described by the
following Ramberg-Osgood law:

5
e= — |1+ (—0—] with 6, = 163 Mpa 3)
E Oo
and by the elastic constants E = 174700 MPa and v = 0.3.
The crack was semi-elliptical, with a relative depth a/t = 0.25 and an aspect ratio
c/a = 2 (for circumferential cracks the ration is c/a = 2.2), and in all cases was
located on the outer wall of the component. Figure 2 shows a typical mesh.

TABLE I- Basic grid of finite element computations
Component Cylinder A =.902 A =.363
Crack orientation Circ. / Long. Circ. Intrados Circ. Intrados
long Intrados
Loading Pressure / Bending / Pressure then Bending

The elbows have been opened in their symmetry plane. The circumferentially
cracked cylinder was also loaded in pure tension and under bending out-of the
plane of symmetry of the cracked cross-section. The bending case was not
considered for the axially cracked cylinder. A closing moment was applied on the
highly curved elbow with a crack located on the crown. A sensitivity analysis,
involving about 15 computations, was conducted on the effects of the strain
hardening exponent, on the crack depth, on the level of maximum pressure in
combined load cases. No pressure has been applied on the crack faces.

395



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

Computations were conducted using CASTEM2000 finite element code.
The meshes were constituted with quadratic isoparametic solid elements. The Von-
Mises flow rule is selected and calculations are made under the small displacement
assumption. The crack driving force J is computed through the use of the G-
THETA domain integral method (10).

PHYSICAL SIGNIFICANCE OF THE REFERENCE LOAD

Interaction condition for a circumferentially cracked cylinder under tension,
pressure, bending and twisting moments (rigid perfectly plastic material)

In the general case, especially for very large cracks, the interaction surface is given

1
by the following set of equations, valid for y < ﬂzn)(;x)
ng +n Xy [ng+n 3
0" Y (Mol 2 2
" - ‘T +nx+ T[T +\/1' Z(ne"nr) 'mt}
2 3
\/1 - Z(ne—nr)2 - mt2
X . 3 2 2 X ng + Ny
me = fcosa - — sin 1-—(ng—n.)- mf - — siny(———) 4
= [cosa - X siny] -2 -n - R - X siny ("02T) o

For short in length cracks these equations may be fairly well approximated by a
unique equation:

M 2 5 2
= -1 = )
=AM {MrefJ ’ [pref} 1 °

where Mef and pref take into account the defect size and orientation and will be
defined later for a strain hardening material. The Lr derivation is explained in (9).

Stress triaxiality effects on the limit load

Determining the limit load in a deeply cracked structure is not always
straightforward. Even if the structure is under pure tension and the crack front
stress singularity is disregarded, the stress state in the ligament may not be uniaxial.
The analysis of GE-EPRI results for full circumferential (5) or through-wall cracks
(6) in cylinders under tension evidences a strong triaxiality effect on the limit load
as shown in Figure 3. In the reference moment, this effect is accounted for by the
triaxiality S; parameter (11). Under pressure, a similar effect exists and the
corresponding correction function is denoted Sp.

From the limit load to the reference load
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For small defects in strain-hardening structures, the containment of
plasticity around a small surface defect, increases the defect influence on the
reference stress. In the R6 route, this is taken into account by a recharacterisation of
the defect and the definition of a local yield load. Our proposal gives different
results: the effect of shallow defects is amplified and the reference loads are
continuous and smooth functions of the crack size. Their expressions are given by:

Pref = PyPnc 'g(Rc’B'A’Sp) (©)
Mot = Hph Mpc Mypnc M
hpy = [1 + 0.083/ (n-1)0-6](sinec)&) @®)
For a circumferential crack, Wpg is given in(10)and gg = 1

Ol a4 L =

For a longitudinal crack, Wpg = gpg are given by the following expressions (9):

1-X
1+BX

3
X p

= max | 1-X%2, .. & S.. =095+ X——

gpg = max Pt P ps ( 1+p)

JX(1+BX)

In all the formulae terms of higher order than B have been neglected. The variations
of ppgand gps with the defect size are shown in Figures 4 and 5. An illustration of

the efficiency of the scheme is given in Figure 6.

CONCLUSION

This first part has shown that the derivation of an accurate yield function allowing
to obtain J from the elastically computed value Je, requires to improve the reference
stress definition. This is achieved by expressing a local yield condition at the point
of the crack front were J is estimated, on the cracked structure in terms of the
applied loads, the crack singularity being disregarded. Thus instead of considering a
yield limit surface, a reference interaction surface is derived, accounting for strain-
hardening and stress triaxiality effects. The application to surface cracked pipe
under simple or combined mechanical loadings appear to be promising.
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SYMBOLS USED

a = crack depth (mm).

C = half length (mm) of the semi-elliptical longitudinal crack

E = Young's modulus (Mpa).

J = crack driving force (kJ/m?2).

Mg ,Mp, ,M; = In plane and out of plane bending and twisting moments (10 kN.m).

n = Ramberg-Osgood strain hardening exponent.
PyPnc = 4[3/ V3 Oy uncracked cylinder limit pressure (MPa).
M,pnc = 40 R2 tmg = Mf m, = ————I\L———
nc — m - -
Y y Mypnc t 231 Oy R2 t
1 n.+n
nrz_L[i_Q), ig=-L- L__], hoo N Mt
Oy 2 6 oy 2B 2 21\:0th 2

QO-ref = reference load scaled to G (the unit is the same as the applied load)
QFE = Finite Element computed reference load
R¢ = elbow curvature radius (mm)
Rm = pipe mean radius (mm)
t = pipe thickness (mm) and X =a/t

Subscripts P and E refers respectively to straight pipe and elbow. The subscript nc
refers to the parent uncracked structure, v to Von Mises stress or strain. Subscripts
s and 0O refers respectively to longitudinal or circumferential orientations. The
superscript e refers to elastically computed quantities.

o Ramberg-Osgood law parameter.

B = pipe curvature parameter (/(2.Ryy) ratio).

Y = half crack length (degree).

A = Elbow characteristic factor (A = Rct/ R2)
p = Reduced length (p = c/ \/R—mt )

v = Poisson's ratio.

Go = Ramberg-Osgood stress parameter (MPa).

Oy = 0.2% proof stress (MPa).
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CIRCUMFERENTIALLY CRACKED CYLINDER UNDER BENDING
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Figure 1: Reference loads derived from FE results and predicted by KJ95

Figure 2: Partial view of the mesh of a cracked cylinder.
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TRAXIALITY EFFECTS ON THE REFERENCE LOAD FOR A
FULL CIRCUMFERENTIALLY CRACKED CYLINDER IN
TENSION
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Figure 3: Stress triaxiality effects on the reference load
REDUCTION OF AREA FACTOR IN A PRESSURE ATTENUATION FACTOR
CIRCUMFERENTIALLY CRACKED IN A LONGITUDINALLY CRACKED
CYLINDER
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Figure 4: Defect influence on moment Figure 5: Defect influence on pressure

CIRCUMFERENTIALLY SURFACE CRACKED CYLINDER UNDER
CONSTANT PRESSURE AND INCREASING BENDING
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Figure 6: Comparisons of finite element results and KJ95 predictions
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