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FITTING THE GURSON PARAMETERS BY USING A PHYSICAL
VOID COALESCENCE MECHANISM

Z.L.Zhang and M. Hauge”

There is a non-uniqueness problem in the common way of fitting
damage parameters for the Gurson model. In this paper, a
method based on the new failure criterion for the Gurson model
recently introduced by the authors is proposed for fitting the
damage parameters. It is proposed that the initial parameters
rather than the critical parameter should be fitted. According to
the method, the critical parameter is a natural result of the initial
parameters assumed. By comparing the numerical and the
experimental results, the “exact” initial parameters can be
determined. With this method, the number of unknown
parameters in the Gurson model is reduced and the non-uniqueness
problem of the damage parameters can be partly solved.

INTRODUCTION

In the conventional fracture mechanics, it is supposed that the fracture
parameters can be transferred from laboratory specimens to large scale
components and structures. However, in the application of the elastic-plastic
fracture mechanics to tough, ductile materials, it has been found that there is a
strong geometry dependence of crack resistance. Now it is generally understood
that the geometry dependence is attributed to different constraint levels at the
crack tip. One of the reasons for the failure of the conventional fracture
mechanics to handle the constraint is that it neglects the presence of the micro-
damaging process at the crack tip. In the recent years, micro-mechanical models,
for example the Gurson model, have been found attractive in treating the
constraint effect. According to the micro-mechanical model based approach, the
material failure behaviour is described by a set of micro-mechanical parameters,
rather than by the pseudo macro-fracture parameters. The approach can predict
the geometry dependence as long as appropriate micro-mechanical parameters
are given. Because the damage evolution rule should be the same in both non-
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cracked specimens and cracked specimens, the damage parameters established
from simple tensile specimens can also be used in cracked specimens. Figure |
shows how the approach could change the transferability concept of the
conventional fracture mechanics for ductile fracture. The transferability is not
carried out by the conventional fracture parameters, such as the J-R curve, but by
the micro-mechanical parameters.

Micro-
mechanical
parameters

Figure 1 Transferability by the conventional fracture mechanics (dashed arrow)
and by the micro-mechanical model based approach (solid arrows).

In the literature, considerable efforts have been spent on the verification
of the capability of the micro-mechanical model based approach for predicting
macro-fracture behaviour. In contrast, less efforts have been seen on the
determination of the micro-mechanical parameters. As far as the Gurson model
is concerned, there is a non-uniqueness problem in the current way of parameter
fitting (1). That means different sets of parameters could yield same macro-
behaviour. Therefore, even though the macro-failure behaviour can be predicted
by the micro-mechanical parameters, it is not possible to classify the material
toughness based on the fitted micro-mechanical parameters.

Recently, a new failure criterion for the Gurson model has been
introduced by the authors (2). The criterion is based on Thomason’s void
coalescence mechanism (3). In this paper a method for fitting the Gurson
parameters based on the new criterion is proposed. By this method, the fitted
initial parameters can be used for classification of certain type of materials. In
order to simplify the problem, as what has been done in the round robin (4) and
the work by Xia and Shih (5), it is assumed that the material contains only one
type of inclusions which nucleate at the beginning of plastic loading.
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GURSON MODEL AND THE COMMON WAY OF PARAMETER FITTING

The Gurson model referred here is written as (6):

2

q )
52 +2¢q, f cosh(

3q20m
26

¢0(0.f.6)= )=1-(g,/)* =0 (0
where constants g, and g, were introduced by Tvergaard (7), G, and g are the
mean normal and effective part of the average macroscopic Cauchy stress o, G
is the yield stress of the matrix material, fs the current void volume fraction.

It is well known that the Gurson model itself can not predict void
coalescence. An extra criterion should be incorporated into the model to manage
the void coalescence. Practically, the treatment of void coalescence becomes the
determination of the “critical void volume fraction”. A function has been
introduced by Tvergaard and Needleman (8) to model the post-coalescence
behaviour (rapid-decay of the load carrying capacity) of the Gurson model,

A for f<f
f£-f A8, (2)

£, +?r_—f‘(f—f') for f > f,

fr=

Here, f, is the so-called critical void volume fraction at which voids
coalesce, f is the void volume fraction at final failure of the material, and
f./=1/g,. It should be mentioned that the absolute value of f, does not play a
significant role in the numerical modelling once f, is determined (1). In the

following discussion, f, is ignored. In the numerical examples reported in this
study, f,=0.2 with ¢,=1.5 and ¢,=1.0 have been used.

The damage parameters involved in the Gurson model can be classified
as the initial damage parameter, fo» which is the void volume fraction at the
beginning of plastic deformation, and the critical damage parameter, f,.

In the common way of parameter fitting, no void coalescence mechanism
is used. By selecting the initial parameter (fy) and comparing the numerical
prediction of the Gurson model with experimental result, the critical parameter
(f,) is fitted (4,9). According to this way of parameter fitting, the fitted f.isa
function of f,, the experimental failure behaviour (F,, ) and the loading (L)

fe=1.fo, F,,. L), ' 3)

For the same given F

exp.?

different f,, will result different values of J.-In
other words, ditferent sets of parameters ( fosf,) could correspond to the same
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material failure behaviour. One example of this non-uniqueness problem is
shown in Fig. 2. In Fig. 2, a notched round bar has been analyzed with the stress-
strain curve used in (4). The notch radius is 0.785 mm and the smallest diameter
of the bar is 4 mm. Fig. 2 shows as long as the parameters are small and have the
approximate relation f, =29f, +2200f, they all correspond to the same
failure behaviour. In the common way of parameter fitting where no void
coalescence mechanism is used, the numerical failure behaviour can be generally
described,

Fnumer.zF(fO’fc’L)' 4)

Equation (4) indicates that there are two unknowns in the failure equation
and it is not possible to determine the ‘“exact” parameters from the given
experimental result.
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Figure 2 The non-uniqueness problem in the Gurson model: different sets of
parameters ( f,, f.) correspond to nearly identical material failure behaviour.

A NEW METHOD FOR THE PARAMETER FITTING

In the new method proposed here, the failure criterion for the Gurson
model recently proposed by authors (2) is used. The failure criterion is based on
a modification of Thomason’s physical void coalescence mechanism. By
observing that void coalescence appears as a result of plastic localization, the
material capacity against plastic localization, the coalescence stress, o S g
calculated. In the beginning, the void is small and the capacity is very large.
Therefore, the applied stress is not able to cause void coalescence and the
material is stable,

Applied Coalescence
1

(0} <0, , (5)

where 6, is the maximum principal stress. The void coalescence will occur once
the following condition has reached
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Figure 3 a) The void coalescence mechanism and b) a coalescence assessment
diagram: coalescence will occur when the two curves cross each other
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The coalescence mechanism is schematically shown in Fig. 3a. Fig. 3b
shows that the material is stable until the two curves cross each other, where
coalescence occurs. The coalescence stress, O'IC""’”"""“, is a function of the current
void-matrix geometry and the current yield stress of the matrix material. Detailed
formulations for calculating the coalescence stress and implementing the
mechanism in finite element analysis can be found in (2,10). According to the
mechanism, the coalescence is a natural result of the plastic deformation.
Therefore, once the fo is given, the critical void volume fraction f, at void
coalescence can be written

fo=r1.f,, D). ©)

According to the mechanism, there is a one-to-one relation between the
numerical failure behaviour F and the f,,

numer.

Fnumer, = F(fO’L) (8)
By comparing the numerical and the experimental failure behaviour we have
fOZfO(Fexp,’L)' (9)

The above equation shows that fo can be uniquely determined from the
given loading and experimental failure behaviour.

Fig. 4 shows an example of the new way of parameter fitting. The

material is the same as in Fig. 2. The diameter of the smooth bar is 4 mm. An
initial imperfection of 0.005 times the diameter at the middle of the specimen
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was applied. It can be seen from Fig. 4 that the numerical failure behaviour is
uniquely controlled by the initial parameter f,. By comparing the numerical
prediction with the experimental result, the “exact” initial damage parameter, f,,
can be easily determined. If all the materials have only one type of inclusions,
the fitted f; can be taken as a parameter for material classification.
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Figure 4 An example of the new method for parameter fitting: numerical
prediction is uniquely controlled by f,,.

CONCLUDING REMARKS

There is a non-uniqueness problem in the current way of parameter
fitting, where no void coalescence is used. By using the method proposed, this
problem can be solved for materials having only one type of inclusions. For more
complicated cases where nucleation of secondary voids and characteristic length
parameters are involved, the non-uniqueness problem can not be completely
solved by the proposed method. However, the number of unknown parameters
can be reduced. Development of a methodology for fitting the Gurson parameters
for the more complicated cases is currently going on.
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