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FINITE ELEMENT SIMULATION OF THE FRACTURE BEHAVIOUR OF
ELASTOMERS WITHIN A LARGE TRANSFORMATION FRAMEWORK

. Thuillier and G. Rio!

Finite element simulation of the behaviour of a pre-cracked elas-
tomer body is performed, in order to characterize the influence of
non-linearities (kinematics and constitutive law) on the stress dis-
tribution in the vicinity of the crack tip. The general framework
of the modelling is large geometric transformations, including large
deformations, and the constitutive behaviour of the material is of
hyperelastic type.

The results show the evolution of the invariants of the stress tensor
with the distance ahead of the crack tip r. A variation of the kind
7= is discussed, where a depends on the material parameters.

INTRODUCTION

The field of fracture mechanics has been widely investigated using the small defor-
mation assumption and a linear elastic constitutive law. Such assumptions lead to a
stress field near the crack tip singular in r—1/2, where r is the distance ahead of the
crack. The study of these singularities leads to the definition of the stress intensity
factors, e.g. K in mode L. The stress and strain field analysis in the vicinity of
the crack is therefore a basis to understand the behaviour of a cracked component
(Lemaitre and Chaboche (1)). When an elastomer is deformed in a quasi-reversible
way up to very large strains, it has to correspond physically to a non-linear be-
haviour; the assumptions underlying linear fracture mechanics are then no longer
relevant. Though recent studies deal with fracture mechanics in the case of large
displacements-small deformations, e.g. Mialon and Visse (2), the field of non-linear
fracture is still under current investigation when non-linearities arise both from kine-
matics and constitutive behaviour.

A finite element simulation of the behaviour of a pre-cracked body is presented
in this paper. Calculations are performed using a finite element program HEREZH
developed at the LG2M. The general framework of the modelling is large geometric

Laboratoire de Génie Mécanique et Matériaux (LG2M) - Université de Bretagne
Sud - Centre de Génie Industriel - Guidel-Plages 56520 Guidel (France)

503



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

transformations, including large deformations and the constitutive law is hyperelastic
(Favier (3)). Such alaw has been used successfully to model the mechanical behaviour
during loading of elastomers (Favier et al (4)). After a short overview of the finite
element simulation, cf. Rio et al (5) for more details, calculations of the stress and
strain fields in a pre-cracked rectangular body under plane strain conditions are
presented. Special emphasis is given to the evolution of the stress tensor invariants
with 7, in an attempt to fit their evolution with a 7= function (a being a positive
scalar).

FINITE ELEMENT SIMULATION

Main features of the modelling. Let us consider the evolution between times ¢ and
t+ At, i.e. between an initial and a deformed state respectively, of a body Q. Defor-
mation of 2 depends only of the body itself, whatever its position in space. Therefore,
a material frame attached to the body is chosen and a curvilinear coordinate sys-
tem is introduced. For the sake of simplicity, the finite element mesh is chosen as
the material frame. The Almansi strain tensor is defined from the metric tensor at
t + At, G and the metric tensor at time t convected at t + At using a two time
covariant transport, {t4'G: At - 3G - :+AtG) noted Equilibrium equations
are approached by the principle of virtual power in weak formulation and the final
non-linear system is solved by a Newton-Raphson method.

Constitutive behaviour. The general definition is made from a reference state and
relies on the assumption of an elastic energy which is a state function. The Cauchy
stress tensor o is defined from the scalar elastic energy density £ (eq. (1)) where D
denotes the strain rate tensor and g = |G'j;|. Indeed, £ depends on scalar variables
Pa (eq. (2)) which characterize the geometric evolution of the body between the
reference state and the deformed state (eq. (3)).

0 4 1 08 _ 9& dp.
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= Di g () 8t ~ Opa dt

dp. .
(2) —f =fd Dji  (3)
For an isotropic material having a symmetric tensile-compression behaviour, the
variables p, can be related to the first and second invariants of the strain tensor, i.e.
the volume variation v and Tl = % 6"']- ¢’.. The following dependence has been used
in the calculations:

&= b oo (3

where k is an incompressibility modulus and p,, Q, and g, are defined in Fig. 1.

NUMERICAL RESULTS

Tensile test
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The order of magnitude of the material parameters are chosen to be consistent with
the behaviour of an elastomer. Fig. 2 shows the stress-strain curve of a simulated
tensile test. The corresponding numerical values are presented in table 1.

LINEAR ELASTIC || Young modulus E = 9.0 | Poisson ratio v = 0.45
[ nypERELASTIC || k =30.0 [ poo=10 [pr=20] Q=02

TABLE 1 - Numerical values (in MPa) of the material parameters for linear elastic
and hyperelastic constitutive laws.

Behaviour of a pre-cracked body

A rectangular pre-cracked body (Fig. 3) is deformed in uniaxial tension in plane
strain conditions. The following dimensions are used: length = 800 mm, width =
500 mm, thickness = 5 mm, crack length a = 35 mm. The mesh consists of 695
linear pentaedrons and is made finer near the crack, i.e. in this area the nodes are
distributed according to a geometric progression. The characteristic length of the
nearest element to the crack tip is around 3.5107° x a which is a right order of
magnitude when such a method is used (1). There is only one layer of elements in
the thickness.

Validation. In a first step, calculations using a linear elastic constitutive law are
performed in order to validate the mesh. The simulated results lead to the knowledge
of 022 ahead of the crack and to the displacements ug of the border of the crack; the
index 2 refers to the direction of the applied stress o,. The stress intensity factor Ky
is then given by (1):

E 2T
P T 22 T
KI——}I_% (a \/27rr)_£1mo (——————2 = - uz)

(a) (b)

Fig. 4 shows the results as well as the analytical solution corresponding to such a
geometry, Ky = 1.122 o, VT a (c). At low applied stress (0, < 0.005 MPa), the
product o2 #1/2 tends towards a constant from r = 0.01 mm from the crack tip.
This distance increases with o, e.g. 7 = 0.05 mm when o, = 0.02 MPa. The shape
of the curve indicates that if 22 follows a r—* variation, & must be different from
0.5, even in the elastic case.

Hyperelastic body. The remote applied stress varies up to 0.4 MPa. Above this
value some of the elements in the vicinity of the crack become too highly distorted
to give reliable results and it also leads to numerical instabilities. Strains reached
at the crack tip lie fully within the field of large deformations, e.g. €11 = —3.0 and
£92 = 0.4 when o, = 0.2 MPa. A remeshing technique at the crack tip could push
further this limitation and is under current investigation.

It is chosen to represent the stress state at a given point of the body by the three
invariants of the stress tensor o. Only the second one I, =3 U"]- o', is presented
for the evolution of the three of them are very similar. Fig. 5 shows the variation
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of ln(ﬁ;/z) with In(r). Out of the several calculations performed, it comes that
three main areas can be distinguished, each one being associated to a quasi-linear
evolution: area I corresponds to a linear elastic behaviour with a slope around -0.5;
area 11 occurs at each applied stress levels with a constant slope and when the stress
and strain concentrations are high enough at the crack tip, area 111 develops with a
slope around -0.67. The variation of ln(ﬁi/z) with In(r) shows a reverse tendency,
i.e. aslope around -0.72 is noted immediately after the elastic area and it decreases
in absolute value when getting closer to the crack tip (Fig. 6).

Calculations were performed to study the influence of the material parameters:
0.5 < pur <50,1< Moo < 50, 0.01 < Q, < 1, the parameter k being calculated to
keep a constant Poisson ratio of 0.45. As a summary, it can be said that:

1. The simultaneous existence of the three areas depends on the stress and strain
concentrations at the crack tip, which depend both on the applied stress and the
global stiffness of the body. For example, when p, = 50 MPa, the body can be
submitted to o, = 0.4 MPa and area 111 develops only above o, = 0.2 MPa (Fig. 7).
2. It seems that whatever the material parameters and the applied stress, area 111
is characterized by a constant slope of the order of -0.67. This remark should be
deepen for higher stress and strain concentrations.

3. The slope of area 11 depends on the material parameters, see Table 2.

4 (MPa) || 0.5 2 5 50
slope X |-0.43 | -0.39 | -0.27

TABLE 2 - Variation of the slope in area 11 with Kr. ftoo =1 MPa, Q, = 0.2 MPa,
30 <k < 510.

Conclusion. Although the constitutive law is non-linear, a dependence of the stress
components in the vicinity of the crack tip in 7~ can still be found, where o depends
on the material parameters and on the stress and strain concentrations. It seems that
when these concentrations are high, « tends towards -0.67. The strain components
show a reverse tendency.
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Figure 1: Identification of the material ~ Figure 2: Stress-strain curve recorded
parameters from a shear test. during a simulated tensile test.
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Figure 3: Pre-cracked rectangular body, meshed with 695 pentaedrons. On the left
hand side, zoom of the area near the crack.
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Figure 7:  Same as Fig. 5 with y,
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