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FAILURE OF A BUNDLE OF CERAMIC FIBRES IN A CMC

R. Paar and J.L. Vallés *

The failure process of a bundle of reinforcing fibers in 2
unidirectional ceramic matrix composite is studied. By
substructuring the embedded fibres into short elements and using
a shear lag model to evaluate the stress profile, the stress - strain
plots for a composite with matrix crack saturation as well as the
local distribution of fibre failures are calculated. Results of a
simulation using constituent properties of a real material are

presented.

INTRODUCTION

INIRULIV 2 2=

Continuous fibre-reinforced ceramic matrix composites (CMCs) are promising
candidates for high temperature structural applications, where reliability is a
major issue, because unlike monolithic ceramics they show a strong non-linear
behaviour which is due to the activation of new damage mechanisms.

In this work a unidirectionally reinforced CMC is considered, which is
loaded parallel to the fibres axis. Since the failure strain of the matrix is
usually lower than that of the fibres, progressive matrix microcracking leads
to a reduction of the matrix stresses, until saturation of matrix cracking is
reached. The composite then consists of a series of matrix blocks connected
by the bundle of continuous fibres. Due to the periodicity in the stress profile
along the fibres resulting from the matrix crack distribution, the reinforcing
bundle can be considered as a chain of shorter bundles, each associated to a
matrix block. The failure of the CMC results from the process of fibre failure.

The strength of a bundle of loose fibres has been described analytically by
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Daniels (1), but when the bundle is surrounded by a matrix the study is more
complex.

In our modelling approach, following the weakest link theory the fibres
are subdivided along the axis into small elements, and each element is
provided with a randomly generated breaking stress, chosen from a given
strength distribution which mimics the flaw population. During the loading
process in a tensile test, the local stress in the different fibre segments can be
calculated using a shear-lag model. Then, where the local stress first exceeds
the strength of a fibre element the fibre is considered to fail. The stress profile
is subsequently updated according to the new boundary conditions and the
load is redistributed among the fibres. In this way the process of fibre failure
can be monitored.

MODELLING APPROACH

In accordance with the weakest link theory a fibre of length / that survives a
uniform tensile stress o with probability P can be considered as a series of n
elements with length [, = I/n, each surviving the stress & with a higher
probability P;. Using a Weibull distribution these probabilities are

r=(r) 1{ s (5]] v

where o, and m are the parameters of the distribution and /o is a normalising
length. For a bundle between two matrix cracks having N brittle fibres each
with n elements (see figure 1), using equation (1) an array of Nxn strengths or
breaking stresses is sampled.

In our simulation we assume that the saturation of matrix cracking is
reached before any fibre has failed. In order to calculate the fibre stress
distribution a series of coaxial cylindrical elements is used, in which the fibre
is embedded in the matrix blocks between matrix cracks. In any of these
cylindrical elements, sliding conditions at the interface between fibre and
matrix are assumed, and the shear along the interface is governed by a
Coulomb friction law involving the friction coefficient u, the radial clamping
stress o, and the radial stress caused by the Poisson effect, o;. Using the
approach followed by Takaku and Arridge (2) and Hsueh (3) to study fibre
pull-out, the relation between the axial stress oy and the interfacial shear stress
7; is given by

do, 2

-=1,, 2
dx o @

where 7; = p (0; + 0c), and the stress profile can be obtained analytically.
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If n is large, the stress is assumed to be constant in each fibre element,
and thus the stress profile along the whole fibre length is approximated by a
step function. The applied stress, understood as the one applied on an
individual fibre at the edge of a matrix block, which is necessary to break the
fibre at each element, i.e. which gives a local stress equal to the strength of
the element, is then calculated. The smallest of these stresses for each fibre is
the critical applied stress, since the fibre will break at this applied stress and
at the corresponding element. Sorting these fibre applied stresses in ascending
order gives the sequence in which the fibres will break.

If the matrix is much stiffer than the fibres it can be assumed that a
fibre failure does not locally influence the stress state in neighbouring
elements of other fibres. This means that the local distribution of fibre failures
only depends on the parameters of the Weibull distribution and on the stress
profile along the fibre axis. Further, since the broken fibres can still carry a
small load which depends on the position where the failure occurred, because
of interfacial load transfer, these loads are taken into account when computing
the total composite applied stress in order to construct the stress-strain curve.

RESULTS

A simulation has been carried out for a bundle of N = 5000 and n = 500. The
thermo-elastical material properties were taken from a real CMC and are given
in table 1. Other parameter values used were a fibre radius rp=5.5 pm, a fibre
volume fraction Vi = 0.35, an interfacial friction coefficient B = 0.06 and a
drop from manufacturing temperature AT = -1000 K. The parameters of the
strength distribution are m = 4, 1o =50 mm and oo = 1.1 GPa.

TABLE 1- Material properties in the axial and radial directions

E.. (GPa) Era(GP2) Vax Vrad Otax(10'6K")amd(10'6K")
300 300 027 027  -09 11
40 140  0.12 0.42 3.6 3.6

Matrix (SizNa)
Fibres (C)

The stress profiles along the fibre axis for different applied stresses are
plotted in figure 2. Prior to loading, the fibre is subjected to a residual
compressive Stress Ores caused by the cooling down after processing, except at
the block edges, where the fibre stress goes to zero. When the fibre is
increasingly loaded, the local stresses in the fibre grow, as well as the fraction
of the fibre which is under tensile stress. When the applied stress reaches a
threshold value, there is a complete radial detachment between fibre and
matrix, and the fibre is subjected to a uniform stress state.
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In figure 3 the (stress, strain)-states corresponding to the fibre failures
in two different simulations, equivalent to strain-controlled tensile tests on a
CMC unloaded after matrix crack saturation, are plotted together with the
evolution of the fraction of broken fibres. Curve a is the stress versus strain
plot in the case of a fibre bundle embedded in a matrix block for AT=-1000K.
Curve b corresponds to AT = 0K, i.e. a case with total detachment, and shows
the behaviour of a loose fibre bundle, in agreement with the analytical
solution. Curves ¢ and d are the fraction of broken fibres versus strain for
AT = -1000K and AT = OK respectively. As expected from a Weibull
distribution of strengths, this fraction grows steeply in a small range of
strains.

The local distribution of fibre failures is presented in figure 4, where
the position of the breaking flaw is plotted versus the fibre rank in order of
failure. As expected, the first fibres fail near the matrix crack, because only
this part is under tension, whilst the rest of the fibre is still under residual
compressive stress. As the applied stress increases the fibres break on average
deeper inside the matrix block. Since the fibre stress is still highest near the
matrix crack it could be expected that many fibres keep breaking there, but the
figure shows the contrary, because the fibres which were weak in that region
are already broken. When the applied stress causing total detachment is
reached, the local stress becomes uniform inside the block and the fibre failure
positions are also uniformly distributed. This behaviour can also be illustrated
by computing the statistical parameters of the distribution of fibre failures in
figure 4 at different stages during the process. A distribution of pull-out
lengths can easily be obtained from the positions of the breaking flaws, as will
be reported elsewhere.
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Figure 1. Coaxial cylinder model used in the simulation.
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Figure 2. Stress distribution along the fibre axis for different applied stresses.
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Figure 3. Stress-strain plot and evolution of the fraction of broken fibres.
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Figure 4. Local distribution of fibre failures during a simulated tensile test for
AT = -1000K. The dashed line shows the attainment of total detachment.
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