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ELASTICITY SOLUTION FOR LAMINATED ORTHOTROPIC
CYLINDRICAL SHELLS UNDER DYNAMIC PATCH LOAD

M.Shakeri®,M.R.Eslami*,M.H.Yas"

Dynamic response of orthotropic and cross-
ply cylindrical shells under local patch
load using elasticity approach are studied.
The shells are of finite lengths and simply
supported at both ends. The highly coupled
partial differential equations are reduced
to ordinary differential equations with
variable coefficients by choosing the
solution composed of trigonometric series
along the axial and circumferential
directions.The resulting ordinary
differential equations are solved, using
Galerkin method to obtain the finite
element model of shell. Finally results
are compared with the results obtained from
the classical theory.

INTRODUCTION

In recent years, several approaches have been used to
study the static and dynamic responses of plates and
shells. Essentially these approaches are based on thin
shell theory approximation, the shear deformation
theories or three-dimensional theory of elasticity. A
simple solution has been presented by Suian Li and Xi
Wang (1) for crossly laminated shell subjected to
axisymmetric 1loading, by assuming that the ratio of
thickness to radius is small and hence can be neglected
in respect to unity. This assumption causes the
governing differential equations with variable
coefficients to be reduced to the ones with constant
coefficients.

In this paper solution is presented for dynamic
response of orthotropic and cross-ply laminated
cylindrical shells of finite lengths. The shell is
pinched by diametrically opposite dynamic loads. Each
load acts on a small rectangular patch.
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THE PROBLEM FORMULATION

Consider a laminated composite hollow cylindrical shell
of length L with M constituent orthotropic laminae. The
mean radius and the thickness of layers are denoted by
Rk and hk ,k =1,2,3,..M respectively. The M layers of

the shell are oriented such that the material axes of
any layer are aligned with the 6-x directions,i.e., the
shell is laminated orthotropic. The constitutive
,equations of a layer are as follows
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The equations of motion in term of displacement
components in cylindrical coordination for a material
with constitutive Eq. (1) yield
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For a shell with simply supported at both ends, the
boundary data are

0, (0,r)=0, (L,r)=u _(0,r)=u (L,¥)=ug(0,r)=ug(L,r)=0  (3)

The boundary conditions on the outer and inner surfaces
of the shell are

crr(x,Ro,t) = F(x,t) i rxr(x,Ro,t) = 'cre(x,Ro,t) = o
Gr(XrRllt) = txr(x'Rl’t) = rre(x'Rl't) = 0 (4)

The conditions of continuity of displacements and
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stresses between the layers are considered as follows
(ur)k=(ur)kd (ue)k=(u9)k+1 (ux)k=(ux)ku
(ar)k=(0r)k~1 (tre)k=(tr9)k01 (txr) =(txr)kﬂ (5)

In Eq.(4) F(t) stand for the load per unit area
corresponding to the pinching patch load. F(t) is
obtained by using a double Fourier summation along 6,x
directions as

F(t,0,%x) = = % [F_sin WX cos ne ] F(t)

where m = 1,2,3,.... n=20,2,4....
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F(t) = P (1-e (6)

Finite Element Solution

The solution which satisfies the boundary conditions
(3) can be taken as

u* = £ =% sinP x cosné Uk(r,t)

r m=1 n=1 m r

K _ «® <o . i k

ug = Zm=12n=151anx sinné Ue(r,t)

k _ 0@ 00 _ _mm

u = 2m=12n=1costx cosné U:(r,t) " Pm = (7)

After substituating Eq.(7) into Eq.(2) the partial
differential equations are reduced to ordinary
differential equations. The Galerkin method is used to
obtain the finite model of shell. Selection of linear
shape functions is based on the prior experience with
Galerkin method (2), where the resulting model was as
precise as models obtained by higher order elements.
Considering linear shape functions for three field
variable Ur,Ue,and Ux as

Ur = <N1>{Ur}' u, = <N1>{Ue}, Ux = <N1>{Ux} (8)

(]
And applying the formal Galerkin method to the

governing equations, results into the following dynamic
finite element equilibrium equation for each layer
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(M) (X}, + (K] {X}, = {0} (9)

For nodes which are located at any arbitrary interior
kth layer and (k+1l)th interface, the continuity
conditions are as

k +1 k k+1 k k+1

U = U = u =U 0-a

rKI rKI+1 BkI Bki+1 ' xKI xKI+1 (1 )
Kk k+1 Kk k+1 Kk k+1

o =0 T =T =T 10-
rKI rki+1 ' rBkI rBki+1 ' Tkl CxrKI (10-b)

Deriving Eq.(10-b) in term of displacements and
expressing the derivations in backward and forward
finite difference for kth. and (k+1)th. layers
respectively we can obtain [txﬂ U;KI and (ixx in terms
of displacement values of neighboring nodes.

The dynamic finite element equilibrium equation for two
neighboring elements at interior kth. and (k+1)th.
interfaces become

(M) {X }k+[K]k{X}k={0} M), X }h4+[K]kH{X}kﬂ={0}

(11)
Applying traction conditions (4) and expressing the
derivatives in backward and forward finite difference
for last and first elements respectively, two system of
algebraic equations are obtained from which the
displacement values on first and last nodes are
obtained in term of the neighboring nodes .
Therefore the dynamic equilibrium equations for the
last and first elements become

(M3, Kb K] (X ={F(0)] (12-a)
(M], {X},+ (K], {X},={0} (12-b)

By assembling Eqs.(9),(11),(12) the general dynamic
finite element equilibrium equation is obtained as

[M]{X }+[K]{X}={F(t)} (13)

Oonce the finite element equilibrium equation is
established, different numerical methods <can Dbe
employed to solve them in space and time domains. The

Newmark direct integration method with suitable time
step is used and the equilibrium equation is solved.

1718



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

RESULTS

A three-layered cross-ply (90/0/90) cylindrical shell
composed of graphite-epoxy was considered with the
following properties

E /E=25 G _/E=0.5 G_/E=0.2 v =v_=0.25
L/ B e ¢ T’ T LT 1T
The patch size is taken to be LP/L = ep/n = 1/25
The nondimensional parameters are used
- - - - 2
ur = _ELh_ur— arra.ela = h—_ (orlaelox)
POLpRmaxep LpRmaxep

The radial displacement history is shown in Figs. (2)
and (3). In these figures. the comparison is made
between the present solution and the classical Love-
Kirchhoff hypothesis for different radius to thickness

ratios R/h + It is clear that the classical theory is
applicable only for R/h>100. The main reason for this
difference is initial curvature and shear effect.

SYMBOLS USED
CiJ = stiffness elastic constants

L = length of cylindrical shell

R /R = inner and outer radius of cylindrical shell

u = radial displacement

u = axial displacement

U, = circumferential displacement
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Figure 1 Time history of radial displacement with R/h =10
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Figure 2 Time history of radial displacement with R/h=100
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