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CRACK TIP PLASTICITY INVESTIGATIONS USING DUGDALE STRIP YIELD
MODEL APPROACH

D. Pustai¢* and B. Stokt

The mechanical response of an infinite thin plate with a central
line crack, which undergoes due to the applied remote biaxial
loading plastic deformation in the neighbourhood of the crack
tips, is considered in this paper. To describe the plastification
process the Dugdale-Barenblatt yield model, which was
originally used by Dugdale to solve a specific loading case in
conjunction with the Tresca yield criterion, is utilized. Two yield
criteria are considered, actually the ones attributed to Tresca and
Mises. The analysis of the investigated mechanical response,
which includes stresses and displacements, is based on its
analytical determination using methods of complex analysis. At
the end, the impact of the load biaxiality on the plastic yielding
is discussed in view of the two considered yield criteria.

DUGDALE'S APPROACH FOR THE CRACK TIP PLASTICITY

The stress solution of an elastic crack problem is characterized by the crack tip
singularity that cannot be withstood by the material elastic resistance. The material
response is therefore inevitably accompanied by plastic deformation the extent of
which may be, as it has been verified by experimental observation, closely
estimated by the solution methods for elastic crack problems.

The crack tip plasticity analysis can be performed according to the premises
of the Dugdale-Barenblatt yield model, Rice (1). In this investigation the Dugdale
yield model, Dugdale (2), which is in fact a simplification of the more complex
Barenblatt model will be assumed. When posing his hypothetical model, Dugdale
assumed first that plastic deformation is governed by perfect plasticity under the
supposition of constant cohesive stress g, = 0, in the yielded area, with g, being
the yield strength, and second that yielding of a material is confined to a narrow
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strip band, extending ahead from the crack tip and lying along the crack direction.
Accordingly, he postulated the existence of an imaginary elastic crack composed
of a physical blunt crack of length 2a and a supplementary cracked zone extended
ahead at both tips of the virgin sharp crack for a distance r,, the length of the
supplementary crack being equal to the length of the plastic zone around the crack
tip. The determination of stresses in the yielded plate is obtained as a superposition
of two elastic responses, both taking the imaginary crack of length 2b into
account. Actually, the elastic response due to the external loading of the modified
cracked plate is superposed by the elastic response due to the application of the
cohesive stresses. Because of the assumed elastic approach both responses are
characterized by the stress singularity, their intensities being given by the stress
intensity factors K, and K,,, , respectively. But, since in reality the stress
singularity, introduced by the elastic approach, does not occur due to plastic
yielding it has to be cancelled by imposing

K:KexI+Kcoh:O : (1)

The fulfilment of the above condition yields the plastic zone length r,,.

PROBLEM DEFINITION AND GOVERNING EQUATIONS

An infinite plate (z € D, D: /z/ > 0) with an embedded straight crack of length 2a
lying on the x-axis (z € L, L: Re [z/ <a, Im z = 0), its material being supposed to
exhibit elastic-perfectly plastic behaviour, is considered. An in-plane remote
loading is assumed to be applied symmetrically in respect of the x- and y-axes,
while the crack boundary is traction free. By adopting Dugdale's approach for the
crack tip plasticity the original elastic-plastic boundary value problem that is
defined on the domain D cut along the line L has to be adequately modified. The
modified problem is an elastic one and is defined on the domain D' (zeD’, D":
/z/ > 0) cut along the line L' (z € L', L": Re [z/ s b =a + 1), Im z = 0).

Since in this investigation we are particularly interested in the remote
loading which is biaxially dependent, the boundary conditions at infinity read

o (2)=0,=ko,, o0,(2)= 6,=0., 0.)=0 as |z|-e 2)

where 0. (0, = 0) and k are real constants. On the edges of the imaginary crack,
ie on the line L*, the correspondent boundary conditions are as follows

0,(2) = 0,(2)=0 for zeL o

g,(2)=0y, oxy(z)=0 for ze L'-L

Here, symbol oy is introduced to denote the constant cohesive stress along the
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yielded zone, its magnitude not being necessary equal to the yield strength J,.

Governing equations of the modified problem, which can be considered as
a plane stress problem, are those of the linear theory of elasticity in conjunction
with any yield criterion, the latter governing the evolution of plastic yielding and
implicitly affecting the magnitude of the cohesive stress gy, In order to obtain
analytical solution we adopt the methodology of complex analysis, Muskhelishvili
(3), and look for analytic functions of the complex variable z = x = i.y that fulfill
both, boundary conditions (2) and (3) as well as equations governing the problem.

Considering the fact that due to symmetry the shear stress vanishes when
Im = — 0. the governing equations of the plane theory of elasticity can be expressed
in terms of one single Westergaard function Z(z), as derived by Sih (4)

0, *+0, = Z(2)+Z(2)

0,,- 0, +2i0, =24-(z -2)Z(2)

(4)

2u(u+iv) = 1\3” fZ(z)d:— {'Z(:)dE—(sz)—ZT:_)}—AE
21 1+v
where 4 is a real constant, u is the shear modulus and vis Poisson's ratio.

In our further investigation we consider two vyield criteria, the Tresca
criterion and the Mises criterion. Since the assumed yield model depends
principally on the evolution of plastic zone along the x-axis the two yield criteria
can be written in terms of principal stresses as follows

o0 3l -l -0 »
for the Tresca yield criterion, and

2 2
O =00y ¥ Oy = 0o (6)
for the Mises yield criterion, respectively.

The magnitude of the constant cohesive stress g,, = Oy tO be used in our
computations is to be consistent with the actual stress state along the x-axis and
any of two yield criteria considered. First, consistency of stresses along the x-axis
implies that the difference of the normal stresses is constant and proportional to
the applied loading at infinity

oyy(:) -0, (2)=24~= (1-k)o,_ for Imz=0 (7

and second, while obeying (7) and introducing a coefficient according to

1-k O
2 o,

)

it can be demonstrated, Stok (5), that consistency of the crack tip zone yielding 1s
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proper only if

0,(1+20) ... k>1
Tresca ises
oy = ooy =0, (a+y1-3a?) 9)

g, k<l

is taken for the cohesive stress o,. The range of admissible values for the
coefficient & is obtained by considering a stable solution with the plastic zone
localized at the crack tips and positive cohesive stress o,. This results in

—0,5 < aTre:ca < 0,5 . _0’5 < aMz:es < _1_ ) (IO)

/3

Regarding the role of the coefficient & in the evolution of plastic yielding
it is important to emphasize that while the biaxial load ratio & is assumed fixed for
a considered loading case the coefficient « is subject to variation from zero to a
maximum value, accordingly to the gradual application of the remote loading o.,.
This fact has a tremendous impact on the cohesive stress behaviour. A thorough
analysis deduced by Stok (5) shows that the cohesive stress o, exhibits some kind
of "softening" and "hardening" effects that are crucial for the nature of the actual
plastic response.

PROBLEM SOLUTION AND DISCUSSION OF RESULTS

In accordance with Dugdale's approach the solution of the considered elastic-
plastic boundary value problem can be obtained by splitting the problem in two
elastic subproblems, one related to the application of the remote loading and the
other related to the application of the loading due to the cohesive forces.
Superposition of the subproblem solutions, determined by the correspondent
Westergaard functions Z,(z) and Z,(z) of the form

5 P R
Z(:z)= ———0_+—(0_-0
1() m vy 2( xx Yy) (11)
» =z 2 _ =2
ZZ(Z)z‘ Oy [;arccos(ﬁ)—arctan(— il )] (12)
a\\ z2-p2

e b

yields after the removal of the resulted stress singularities at the crack tip according
to the consistency condition (1), the problem solution in terms of the Westergaard
function Z(z)
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+5(0_n_—0yy) (13)

Oy (14)

Stresses and displacements in the domain D can be readily determined by
considering relationships (4), while in order to characterize the fracture behaviour
it is convenient to determine the crack tip opening displacement J, and the plastic
extension ahead of the crack tip r,. Both parameters can be expressed explicitly in
terms of the applied remote loading o, and the correspondent cohesive stress gy

o O (o o
- flnézE ¥ In[sec (= 2] (15)
a nk a ©nkFE 2 oy
o
Q:£~1:sec(£—yl)fl . 16
)
a a 2 0,

At this point some conclusions can begiven regarding a role that the load
biaxiality has on the plastic yielding. In general, larger the absolute value of &
larger the sensitivity of the plastic response. Also, with respect to the same
absolute value the negative values of k are more favourable and yield smaller
plastic yielding. However, in order to thoroughly characterize and trace the plastic
response, as the load is monotonically applied, one needs to consider the evolution
of parameters affecting this response. The simplest case is undoubtedly the one
studied by Dugdale (2) where the uniform load biaxiality (k = /) is assumed.
Because of @ = 0 the cohesive stress is constant g, = ¢, through the whole loading
history and results, obtained by taking the considered yield criteria into account,
do not differ. For k¥ ~ I and @ - 0, however, a monotonic increase of the load is
characterized by a monotonic decrease of the cohesive stress g;. Due to this
"softening" effect the rate of the plastic zone propagation increases progressively,
irrespective of the yield criterion used. On the contrary, for £ < / and @ -~ 0 the
responses regulated by the two yield criteria differ substantially in their nature.
With the Tresca yield criterion assumed the cohesive stress remains constant gy =
o, through the whole loading history, thus exhibiting a "perfect plasticity" effect.
Much more complex is the response if the Mises yield criterion is assumed. At low
levels of the applied load the response is first characterized by a "hardening” effect
and a monotonic increase of the cohesive stress gy, as the load is monotonically
increased. The rate of the plastic zone propagation is therefore rather moderate.
While for 0,5 < k-~ 1 "hardening" is characteristic for the plastic zone propagation
irrespective of the applied load, this propagation is characterized for values k <~ 0,5
by a sudden "softening" after a certain level of the applied load is passed. When
this occurs the rate of the plastic zone propagation increases progressively.
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SYMBOLS USED

= physical crack half-length (mm)

= imaginary crack half-length (mm)

= crack tip opening displacement (mm)

= biaxial load ratio

= stress intensity factor (MPamm'?)

= shear modulus (MPa)

= Poisson’s ratio

= plastic zone length (mm)

= components of stress tensor (MPa); 1,j € {x,y,z}
= yield stress (MPa)

= cohesive stress (MPa)

= x-component of displacement vector (mm)
= y-component of displacement vector (mm)
= complex variable (z=x +1y)

= Westergaard function
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