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CRACK TIP FIELDS FOR RAPIDLY GROWING
CRACKS IN VISCOPLASTIC MATERIALS

S. HEIMER* and D. GROSS*

A fast propagating crack in a visco-plastic material of Perzyna-
type is considered by two different methods. First, the prob-
lem of an semi-infinite crack in an infinite plate is examined.
An analytical investigation leads to a system of ordinary diffe-
rential equations, which is solved numerically by a multiple
shooting-method. To prove the physical significance of the re-
sulting crack tip fields a mixed Finite Element formulation is
introduced in the second part which is applied to the boun-
dary value problem of a running crack in an infinite strip under
steady state conditions. Results regarding to the extension of
the dominance zone are presented.

INTRODUCTION

If fast crack propagation in conjunction with rapid deformation in inelastic
materials is considered, rate effects must be taken into account. Consequently,
it is necessary to use viscoplastic material models.

Much work has been done to solve the field equations for running cracks in
viscoplastic materials, many of them limited to creep crack growth. One of the
most important investigations was published by Hui and Riedel (4) in 1981,
who derived a new type of singular field in power law hardening materials. It
is characterized by a stress and strain singularity of the form o, €5 ~ pH/(=n)
where n is the hardening exponent and n > 3. In 1983 Lo (6) showed that
this result stays in the case of rapid crack growth and consideration of iner-
tia effects. However, differentiation with respect to time is eliminated by a
Galilean transformation from a global coordinate system into a local system
fixed at the tip. In this study, Lo’s work concerning mode III is generalized
to problems in plane stress and plane strain for arbitrary material parameters
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and crack tip velocities @. Therein, a Perzyna-type constitutive equation is
used to describe elastic-viscoplastic material behavior. An analytical exami-
nation results in a system of nonlinear ordinary differential equations, which
is solved by a multiple shooting algorithm. Since the system is stiff and im-
plicit, modified backward differentiation formulas up to fifth order are used
to integrate the arising initial value problem. A special Nelder-Mead-Simplex
method (NMS) optimizes in combination with Newton’s method a residuum
to satisfy the boundary conditions of stress free crack faces. Because NMS
doesn’t require any derivatives, the obtained numerical scheme is very stable
and rather efficient. It provides the field quantities, so that further investi-
gations related to the direction of crack propagation, the unloading zone, the
viscoplastic strains and the external load in the case of small scale yielding can
be performed.

To prove the significance of the crack tip fields the extension of the zone of
dominance must be determined by solving boundary value problems. There-
fore, a suitable finite element method is developed, which uses a mixed formula-
tion for triangles (Kuessner et al (5)). Since the displacements and their deriva-
tives are treated as independent variables, kinematics and balance equations
are only satisfied in weak form. However, the formulation allows a Galilean
transformation corresponding to that in the first part. A comparison of the
results of both approaches shows a remarkable importance of the crack tip
fields, which are derived from the semi-analytical examination.

CRACK TIP FIELDS

Basic Equations

The governing equations needed for the problem formulation are the equa-
tion of momentum balance, the kinematics and the material law:

Oij; = p Ui (1)
1 «
gij = 5 (wij + i) (2)
e LN .
Eij =6Zi+€i]1-)261-]-+7—'<—k—— — —7;0:]- 5 n > 1 (3)

Here, p is the mass density, 7 a viskosity parameter, k the yield stress
in shear and n the hardening exponent. of; denotes the deviatoric part of the
stress tensor and Jj its second invariant. As already mentioned, the time
derivatives are eliminated by a Galilean transformation (Fig. 1):

.(—),=.(—);70—_=.(—);i=—di (4)
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A seperation technique yields a system of ordinary differential equations
for the angular distributions of stresses and displacements

MY (Y0, welin . )
@

If suitable dimensionless field quantities are introduced, the solution will
depend only on the hardening exponent n, Poisson’s ratio v and the Mach
number m, which is defined by m = a/c,. Therein, a is the crack tip speed
and ¢, the shear wave velocity.

Numerical Solution

The system of equations (5) is transformed into a nonlinear optimization
problem which is solved numerically by a multiple shooting method. If an
approximate value Yo = Y(¢ = 0) is known, the angular distributions of all
field quantities can be obtained as the solution of an initial value problem.
Evaluation of the residuum

R=0o,(p=m)+72(p=m)+A(r—¢") —0 , (6)

which describes the condition of stress free crack faces, leads in conjunction
with an optimization method to an improved approximation Yo until R < eg.
The penalty term in (6) prevents a break in the integration at a certain angle
¢* before the upper limit of the interval 0 < ¢ < 7 is reached. This might
occur, if an insufficient starting vector Yo was chosen.

As an example results are presented for the parameters m = 0.1; 0.4; 0.7,
v = 025 and n = 9. Figures 2, 3, 4 show the angular distributions of the
circumferential stress, the equivalent stress and the viscoplastic part of the
strains in plane stress. Further results are presented in (3).

FINITE ELEMENT INVESTIGATION

The examination is based on a weak formulation of the momentum balance
equation (1) and the kinematics (2):

/6uTv5y"‘a [e] dQ—/&qu dQ—/&uTt dr—/pzﬁMl dQ =0 (7)
J 2 £ 2 Oz Oz
/ 5T (e — *¥™u) d2 =0 ®)
Q

Here, Q is the considered domain and T, the part of its boundary, where
stress conditions must be satisfied. The body forces are denoted by f and the
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traction vector on I'; by t. The function o [€] is obtained by application of
the Galilean transformation (4) to the constitutive equation (3). As can be
seen, the inertia terms in (7) are already transformend and written in local
coordinates. It should be mentioned, that it is possible to derive the weak
formulation from a Hellinger-Reissner variational principle.

The considered domain is discretized by triangular elements to enable
a simple division of { into circular subdomains around the crack tip. The
advantage is, that radial or angular distributions of the field quantities result
directly from the FE-calculation. The vectors of variables have the form

T T
u=(u/v) , €= (u,-‘c/v.y/"vy/vyr) ) 9)
where € must be the primary variable and u the constraint one for reasons

of stability. Both are approximated by linear shape functions. The integration
of the material law is performed by the Euler-backward formula.

To give an example of examination, we consider an infinite strip of fixed
width. Due to the symmetry, only the upper half is discretized (Fig. 5). The
boundary conditions are v = 0 on the ligament and u = 0 at the left border to
get a well defined problem. The strip is loaded by a prescribed displacement
v = vg on its upper boundary. Figure 6 presents the circumferential distribu-
tion of the equivalent stress o for a constant crack tip velocity m = 0.3 and
linear-elastic material behavior. Therein, the calculated stress has been divided
by the well known 1/4/7 singularity, so that the fan-shaped zone around the
tip approximately describes the region, where the crack tip field is dominating.
The result shows its remarkable extension and significance.
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Figure 5
Finite element model
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Figure 6
Equivalent stress o. times /7
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