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CONCEPTION OF COHESIVE FORCES IN NON-LINEAR
FRACTURE MECHANICS

[.M. Lavit*

The attempt to construct a resistance curve for elastic-plastic
material theoretically was made in this work. The cohesive
forces theory created by Barenblatt is the foundation of this
investigation. The algorithm of the solution of non-linear
fracture mechanics problem for slow growing crack and the
results of calculations coinciding with experimental data
satisfactorily are represented.

It is known that crack growth has been begun on condition that J2=J,.
where J is value of J-integral (reference (1)) and J,. is strength constant of
material. A domain of stable growth is typical for cracks extending in elastic-
plastic continuum. Value of J-integral increases in several times there
(reference (2)).

Theoretical finding of dependence J = J(Aa) (resistance curve) where

Aa is increment of crack length, by traditional methods of fracture
mechanics is impossible apparently. The point is that crack tip moving, the
singularity of stress and (or) deformation fields moves too. Any correct
numerical algorithms simulating this process in conformity to elastic-plastic
continuum are not known.

However, this singularity is not property of physical reality but
attribute of its mathematical description. Cohesive forces (forces attracting
opposite edges of crack) being introduced for consideration. one can
construct stable growth crack theory for elastic-plastic materials. The crack
tip is not singular point of stress and (or) deformation fields in that theory.
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Therefore the problem of theoretical finding of resistance curve has been
introduced to the set of elastic-plastic problems being solved by one of
elastic solution method variety.

Fracture mechanics considering action by cohesive forces had been
created by Barenblatt (3) (its special case had been considered independently
by Leonov and Panasyuk and a little later by Dugdale). He postulated the
following properties of that forces:

1. values of cohesive forces and external loads are such that stresses are finite
in the crack tip;

2. crack growing, the configuration of crack edges in cohesive zone is
invariable (cohesive zone is region where action by cohesive forces is
essentially);

3. cohesive zone length is much smaller than crack length.

Barenblatt proved that the value of load with which crack grows in
elastic material is independent from cohesive force distribution and is equal
to value of load calculated without regard to their action. Thus Barenblatt’s
theory is physical consistent proof for linear fracture mechanics.

The aim of this work has been to find resistance curves using cohesive
forces conception. The problem has been considered in the simplest setting:
stable growth of rectilinear semi-infinite normal discontinuity crack in
elastic-plastic plane has been investigated (fig. 1). There are cohesive forces

Gon x e [—b,O] part and external loads P in x = —c point at crack edges. Let

c¢>>b and, moreover, let ¢ is much more than the largest linear size of
plastic domain around crack tip. In this case J-integral is computed by linear
fracture mechanics formulas.

According by experiments (reference (2)), crack tip is blunted at first
and is narrowed later when crack grows stable. Therefore it is necessary to
refuse the postulate 2 in this case. The relations resolving that problem
without detailed description of distribution by cohesive forces cannot be
found, apparently. Therefore it is necessary to determine the law of state for
those forces. They are expected to have the potential (reference (4)). In this
case the simplest form of that law is (reference (5))

G=G,(1-A/A,) . A el0,A,]
G=0 , A 2 Aposssmvssvsssssmssvins scos Q)
where A - distance between crack edges, G,, - destroying stress for

undefective material (reference (6)) (it is strength material constant
complementary to J,. ); A,, = 2J,./G,, - value of A in x = —b point.

The simplest setting of the problem predetermines sampling of the
simplest rheology model: the material is assumed incompressible, ideal
plastic, been in plane strain state. Elastic deformation is subjected to
Hooke’s law and plastic deformation is subjected to von Mises’s law
o, =068, +2E&, [3: & =0 py = 06,,)
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Here &, - deformation (its elastic and plastic components are marked by e
and p indexes), o, - stress, 0 =0, /3 - mean stress, J,, - Kronecker delta,
E - Young's module, o, - yield point, A - indeterminate multiplier yield
being found from plastic yield criterion, velocity of some magnitude is

marked by point over symbol.
In this case (reference (1))
VY 7 (7o) ISR 3)
where value P is not arbitrary: it is calculated according with the postulate 1.
J-integral determined by formula (3) can be represented as function of
material parameters and crack length increment. The analysis of
dimensionalities using, one can result
I = T(Gra03 A ) e )

where an asterisk designates dimensionless values:

J=JlJe i Gu=G,JE: oy=o0,/Ei Ad= %r Aa..... o)
B

The calculating algorithm permitting to find the dependence (4) is

considered. Elastic-plastic problem is solved by initial stress method. Let

some value of load parameter being, there are stresses o, in a body, crack
edges displaced from each other on A,(x) are loaded by cohesive forces

G,(x) on x €[-5,0] and external loads P, in point x = —c. These values get

small increments with small increment of load parameter. If increments of
stresses are known then further loads p(x) on crack line are defined by
Green’s function constructed with the solution of plane Kelvin’s problem
(reference (7)). It is possible to prove that relations (1) being fulfilled,
computation of cohesive forces distribution is reduced to solution of
Fredholm’s integral equation

. O+o
v sin——— 0
G‘(Q)—lIG'(¢)tan—(p—(1+tan2£)ln-——2—d¢= —2xqtan_+1-A,(6)+
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+2 ——zllG, + Ll 1+tan® = | Inf——=—d@ .......... 6
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sin ———
2
where following notations are introduced
. 3GLb P
6 = 2arctan/—x/b ; G =G/Gy, ; = 5 = ;
/ /Gau X =k, =G, Ve
P, G
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The values of y and ¢ containing in equation (6) are unknown with G*(0)
function. They are found by two further conditions. First condition is
implication from first Barenblatt’s postulate. It is reduced to form

v n
IG'(go)(l +tan’ %)d(p -q= HGJ((p) + p((p)](l + tan® %)d(p e [ ®)
0 0 -
Second equation expresses requirement of becoming zero by cohesive forces
in =y point
G(17) = Dl smccerrs s s maiaiiodssaasa 9)

The solution of equation (6) is found easily with use of known
expansion

. O+p
St = 2 <, sinndsinng

Inj——= =2Z————— ............................. (10)
sin —aé(p— = "

Its substitution to equation (6) makes possible to represent it with any
accuracy as degenerated kernel equation having simple solution method.

As a result of solution of equations (6) - (9) new value b, increments of
displacement of crack edges, increments of cohesive forces, external loads
and stresses are found after that next iteration is made and so until
convergence conditions will have been fulfilled. After wards next small
increment of load parameter is made.

Fixed crack is initial state of growing crack. As fixed crack is in elastic-
plastic material, successive loading process transforming fixed crack not
having plastic strain in neighbourhood of crack tip, to fixed crack having it
is necessary. Pure elastic deformation is got with not large values of o,

compared to G,,. Small increments of G, parameter giving (G, is
parameter of load in that case), it is possible to get cracks having larger and
larger plastic zone around of crack tip. Two variants of algorithm
construction are possible in that case: to increase G,, with constant value of
b (values of J,. and P are calculated) or with constant value of J,. (values
of b and P are calculated). The calculations have shown that these variants

are equivalent.
After the fixed crack has been obtained the process of its growth is

simulated. Aais load parameter now, G,, and J, are fixed, b and P are

calculated.
Main results of calculations are shown on fig. 2. The calculations has

been fulfilled with following input data: o) = 2.5- 107 for all variants; value
of G,,/o, was changed in the following way: G, /o, =4 for variant 1 (curve
1in fig. 2), G,,/o, =5 for variant 2 (curve 2 in fig. 2), G,,/o, =6 for variant
3 (curve 3 in fig. 2).
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The graphs represented in fig. 2 are shown that the value of J for fixed
crack is not depended from G, and is equal to J,. . This result agrees with
J-integral theory (1) that is correct for fixed cracks. All three curves behave
identity: Aa’ growing, J* grows until maximum. This part of the crack
growth is desired resistance curve. The descending branch of curve
corresponds to quick propagation of crack and that process is not described
by this theory. The obtained curves agree with experimental data (reference
(2))-

Crack stable growth process is not bound to continue until maximum
value of J~. The quick propagation of crack can begin previously when
appropriate power conditions will have been created. Their consideration
falls outside the limits of this investigation.
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Figure 2 Resistance curves



