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ASYMPTOTIC FIELDS OF A MODE III CRACK MEETING AN
INCLINED INTERFACE BETWEEN TWO ELASTIC-PLASTIC MATERIALS

J. LI and X B. ZHANG*

An analytical solution is developed for a crack arbitrarily inclined
with respect to the interface between two power-law hardening
materials under anti-plane loading. Assuming the hardening
exponent n —> oo, the perfectly plastic bimaterial problem is
studied. It has been found that, if the crack is in the less stiff
material (T,, / T,, <1), the whole plastic asymptotic fields near the
crack tip can be found. On the contrary, if the crack is in the stiffer
material (T,, / T, 21), the crack tip fields are partially elastic and
partially plastic. For power-law hardening materials, the
mathematical model can be expressed as a non-linear
eigenequation solved numerically. Stress, strain and displacement
asymptotic fields are also determined.

TION

The strength of the composite materials is influenced by the existence of defaults
such as cracks located near the interfaces between the materials. Most of the
experimental and theoretical investigation on this topic has focused on the few
special cases of crack orientations such as cracks lying along, or perpendicular to,
the interface(1)(2)(3)(4). However, cracks advancing or terminating at arbitrary
angles with an interface between two materials may also be found in a variety of
engineering structures. In this paper, we present a general study for a crack
arbitrarily inclined with respect to the interface between two elastic-plastic materials
under an anti-plane loading.

ARI T D
For a pure mode III crack in a homogenous material, the anti-plane shear is
characterised by the only non-zero, out-of-plane (along the Z-direction) displace-

ment component w. The only non-zero stresses are T, Ty in Cartesian coordinates,
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and 7, ,Te in polar coordinates. The only non-zero strains are ,, Yy and ¥;, Yo in the
two systems of coordinates. Consider a power-law hardening material showing a
Ramburg-Osgood stress-strain relationship:

n
(LJ i} (L)
T Yo
in which 1, , Yo are respectively the yielding shear stress and the yielding shear strain
of the material, T and Y are the effective shear stress and strain, » is the material

hardening exponent. Let %(6) be an angular function such that: 1= -Tsiny(0) and

Ty= tcosy(B). the asymptotic fields can be written in polar coordinates (r,0) as
follows:

-\
y=(§) [(B+0)/2~ (8- cw)cos2(a + )/ 22 )
Y. =vsin(®~%) , v, =ycos(8 - %)

y 1/n
T=To —
O(YOJ

Te=Tsin(6-y) , Te= Tcos(6—y) , w = (n+Dry, )

where A is the unknown singularity exponent, C and ¢ are unknown constants
which can be determined by boundary conditions, and in which
(A +1D)(A+1) nA +1
o= , B=
nA2 nA
The function x(8) can be determined by means of the following implicit equation:

sind _ (B—o)sinf(oc+ Uy + 1]+ (B+ o sinf(a— 1)y + 0]
cos®  (B-o) cos[(oc+ ) + o]-(B+ o) cosf (o — 1)y + 0]

3)

In the bimaterial case, consider a semi-infinite crack terminating at an arbitrary
angle 8, with the interface between two bonded power-law hardening materials
(fig. 1). Region 1 and region 3 are occupied by material 1 with the hardening
exponent 7, and the yielding shear stress to;. Region 2 is occupied by material 2
with the hardening exponent 1, and the yielding shear stress o, . By introducing the
following boundary conditions: the free surface at the crack lips and the continuity
of stresses and displacements at the interface between two materials, a non-linear
eigenequation is obtained and the eigenvalue A can be determined. The asymptotic
fields can then be represented as follows :

f perfectly plastics material

Such a case can be considered as the particular case of a power-law material
when the hardening exponent n — e .One can distinguish three different cases
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according to the ratio t¢) /g, .

a). Case when t(;/tgy <1  Table 1 shows the expressions of the angular

function (6) and the stress 1, ,Te for each angular interval.

Region Interval X T T,
3 [_n,eo =, n] _n T cos8 ~Tq, SiN6
2
9, -, - in[0 - x,(8, — = -
[86 = . x2(8, = m)] i mco{&lsinen Ty sin[8-x3(8, - M| T, 00— x5(8, - )]
Tn
- [} 0 T
2 [xz(eo—n)» x:(eﬂ)+1:(9“ ’[) ”
2
[M@wa—-n,w,)] 8 ¢ o
[Xz(eo):eo] 9, . To Sin[e'Xz(eo)] To 005[9‘1:(80)]
T
n (] 0 T
[eu’?] o
1 n r =Ty cosB T, Sin6
[-—.n] :

TABLE 1 - Stress fields for the case when () / Ty <1

b). Case when (1/sin8g)=>(tg;/Tpz)>1 In this case, region 1 occupied by

material 1 cannot be a plastic zone; but region 3 occupied by the same material is.
The asymptotic stress fields for this case are listed in table 2.

Region Interval X T, T

3 [_n,eo = 1|:] n Tp CosO =T, Sin@

2
[86 7. x2(8, — m)] _— mm{k‘_m 6] sin[B - x2(8, — ] To, cOf8 — x(8,—
tM

- 8 0 T
2 [xz ©, - ,:,_%_+L;9_o_’2] o
[90 +X2(8 =) o ] C 0 Tox
5
2
[} 0 T
5 :
2
1 n n —Ty COSO Ty, sin@
- z

TABLE 2 - Stress fields for the case when (1/5in8) 2 (o) / Tp2) > 1
(with 058y <7/2)
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¢). Case when (t¢;sin6 /19;)>1 In this case, neither region 1 nor region 3 is a
plastic zone. The asymptotic stress fields for this case are listed in table 3.

région Interval b é T, To
3 [—n,@n -7 -z 02 cocp - sin@
2 sin 8, sin 8,
2 0
[Oo—meo—i] [} T
2
n L] 0 T
8 ——,6, @
[+-34]
1 [t} 0
>3] -
2
n n L3 —Tp, cos8 Ty, IO
2’ 2

TABLE 3 - Stress fields for case when (To1sin0g / Toy )>1
(with 08y <n/2)

The results of the above cases are illustrated by an example of a mode III crack
terminating at a 45° angle with the interface between two perfectly plastic materials.
The angular stress distributions are shown in Fig. 2, for To1 / Ty = 1.2 and 0.5
respectively. The values of 7, and Tg are normalised by Top - This work shows
that, for a mode III crack terminating at an inclined interface between two perfectly
plastic materials, if the crack is in the less stiff material (91 /Tpp $1), the whole

plastic field near the crack tip can be found for any orientation of the crack with
respect to the interface. On the contrary, if the crack is in the stiffer material
(T01/ 7o > 1), the plastic solution cannot be found in region 1. Region 3 cannot be

a plastic zone if T(;sinB/7yy >1. It means that the asymptotic fields near the
crack tip are partially elastic and partially plastic. In the case when To1/ Tz > 1,
region 1 becomes an elastic zone and when (1, sin 80 /Tpp) > 1, region 3 becomes
an elastic zone, too. To obtain the stress fields in the elastic zones, these zones may
be considered like the plastic zones with yielding stresses: Ty for region 1 and
To2 /sin@ for region 3. The yielding stress T of material 1 has no influence on
the stress distribution in the elastic zones.

Case of power-law hardening materials

According to the hardening exponents of two materials, two different situations
can be distinguished : the two materials have different hardening exponents 7, n,
or the two materials have the same hardening exponent 7= n».

In the first case, Champion and Atkinson (4) have attempted a solution for a
mode III crack lying on the interface between two power-law hardening materials
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by developing more than one term in the displacement expansion. A similar analysis
can be carried out for a crack arbitrarily oriented with respect to the interface.

In the second case, n1= n,= n, the eigenvalue can be obtained from equations (1),
(2) and the boundary conditions by solving a system of non-linear equations. The
eigenvalue A depends on the inclination of the crack with respect to the interface, on
the hardening exponents n and on the ratio of the characteristics of the two
materials, G, defined as follows:

1/n
G =20l (Yoz )
To2 \Yo1

A mode III crack terminating at a 45° angle with the interface between two
power-law hardening materials is investigated. Two bimaterial configurations (G=5
and G=0.2) are studied. The angular distributions of the stress in both cases for n =
5 are illustrated in fig. 3 and fig. 4 respectively. The stress magnitude is normalised
by max(Te). The convergent evolution of the stress fields can be found by choosing
different hardening exponents n, rang from the elastic case to the perfectly plastic
case. If the crack is in the stiffer material (G=5 for exp.), this convergence is very
rapid. There is practically no difference between the angular distributions of the
stress when #=10 and in the perfectly plastic case. If the crack is in the less stiff
material (G=0.2 for exp.), this convergence can be also noticed.

CONCLUSION

This work shows that, the elastic-plastic asymptotic fields can be determined for a
mode III crack at an arbitrary angle with respect to the interface between two
power-law hardening materials. The analysis for perfect plasticity bimaterial can be
carried out by taking n—>eo. If the two materials have the same hardening
exponent, the classical eigenfunction expansion method can be used. The numerical
results indicate that (a) the singularity is stronger as the material containing the
crack becomes stiffer, (b) the singularity vanishes as n— o<. In this case, the angular
distribution of stress tends to the perfectly plastic stress field. Further studies should
be necessary when the two materials have different hardening exponents.
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