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ANALYTICAL SOLUTION OF THREE-DIMENSIONAL PROBLEM FOR
ELLIPTICAL CRACK SUBJECTED TO ARBITRARY TIME-HARMONIC LOADS

I5.1.Shifrin *

The problems for elliptical cracks subjected to arbitrary
time-harmonic loads are considered. '['raction boundary pseu-
dodifferential equations are used for the solution to the prob-
Jems. The constructive analytical procedure is developed for
the expansion of the equations solutions into the Taylor’s sc-
ries by the wave number. The solutions are not analytical
functions of the wave number therefore the Taylor’s sevies
converge only for low wave numbers. Pade approximants are
used to extend the range of accurate approximation of the

solution from low 1o intermediate wave numbers.

STATEMENT OF THE PROBLEM

Let the crack occupies the region (7 in the plane z3 = 0 of an infi-

nite elastic solid. Assume that time -barmonic loads with amplitudes =+t

i

+(ty, by, ts), ti = ti(B,z) are applied to the crack surfaces. Here 2 =
(x1,22) € (7, B is the wave numiber (3 = w/C,, w is the angular {requency,
C, is the transverse speed). [t is presumed that any time-harmonic motions
are superposed upon a statically open crack, achived say by applying tension
at infimity in the z3 - direction, suflicient to always ensure a gap between the
faces. The radiation conditions are assumed at the infinity. 1t 8 well known

that the problem can be reduced to the following boundary equations
pc Ksa(B)|ua] = ts (1)
pa K (B)u ] + pa Kia(B)|ne) =t (2)
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pa Ki2(B) 1] + po K22 (B)[u2] = t2
[w] € HJ./?(G)) ti € H_,/,(Q),

where [u;] = [u;(8, 2)] are amplitudes of crack opening displacements, K;; (3)
are pseudodifferential operators, ps; is the restriction operator to the crack
domain, Hllg(G) and H_,;5((7) are Sobolev spaces. I'he symbols of opera-
tors K;;(3) are the following

Kaa(B,€) = p(2B8°) 7482 (¢* — p*)'/* — (26 - B (¢* - 9*B%)~Y/?)
Kss(B3,8) = —p(287)7 " {agd(€* - p*)'/* - p*[(€* — B9\ /* -
—E2(e? - A7) —agd (€ - 9?3?12}
Ki2(8,8) = —p(287) 7 6 A ME ) 2+ B2 —32) 1 12 —4(e2 — 0 37) 117}

Here & = 1,2, p is the shear modulus, 72 = (1 — 21)/(2(1 - v)), v is the
Poisson’s ratio, £ = (&), &), &2 =& +¢2 .

Assume that the crack region G is an ellipse G = {(21,22) @ 2i/a? +
202

r3/a3 <1, 0 < ay < a;} and the loads amplitudes tx can be expanded into

the power series by the wave number 3

o0

te= Y (Ba)V (Pri(y) + iQna(y) (3)

N=0

wherey = (1, y2), o = #;/a;, 1= 1,2, Pyir(y) and Qni(y) are polynomials,
deg Pyi(y) < N+ J, deg Qni(y) < N +J, J is an arbitrary nonnegative
imteger.

In this case the analytical constructive procedure for the expansion of
the solution to the cquations (1), (2) into power series by the wave number

= developed.

THE METHOD OF SOLUTION EXPANSION INTO THE
TAYLOR’S SERIES BY THE WAVE NUMBER

Denote p* = yf +y3; wl(x) = (1 = p*)?, p< 1 9lz) =0, p2 1
15,07} = gl yivl(=).
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The developed analytical method is based on the following result. Func-
tions pg K (,B)Tpl{?(z) are calculated analytically and have the form

pa Ky (BYL) (2) = Y (Baa)™ UL (y) +4 ) (Ba2)™ > Vs(y)  (4)
=0

n=0

where U.lej (), V:}:ff;;(y) are polynomials, deg nglj (¥) =2n+p+gq, deg
V;,f_‘,'_’:;(y) = 2n. The explicit form of functions U;Zl’ (y),V;,’nqus(y) 18 too
cumbersome and doesn’t represent here. Note only that VZ7*(y) = 0.

In consequence of formulae (3), (4) the solutions to the equations (1),

(2) can be found in the following forms

[wi] =Y Ba)™ Y (BIM +iBITTH (2) (5)

m=0 ptgs<m+J

where B;;’”', B;;:{“' are real constants.
Substituting (3), (5) in (1), (2) and using (4) one gets equalities between
power series by the Ba; . Equating the coefficients of these series one obtains

the system of the equations

[N/2]
Yo BNUI(y) = Prs(v) - Y., Y. BRN-ruzt(y)+
P+a<N+J n=1 p+g<N+J-2n
(vV-3)/2) ,
HWN) > Y BENomesiypaR) (6)
n=0 p4+g<N+J-2n-3
, [V/2] N
Y. Bl =Qm) - Y, Y, B TmURRae)-
P+e<N+J n=1 p+g<N+J-2n
(N-3)/2] -
-W(N) 3 DR bt e )

n=0 p+g<N+J-2n-3

Here W(N) =0, N =0,1,2 and W(N) = 1, N > 3, square brackets denote
the greatest integer in the value.

e (U39 (v) ane (U372 (0)Y, _ ( Pm@) _
p+q§v+J[qu (quw(y)) + qu (Uzpqn(y))] = (PNz(y))
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Ty e (UR0)) g (VR0
. [.B N=2n,r ( m ) of B‘Z, -2n,r ( m )
n=1 p+q<N+J-2n . ngl?( ) ke pq22(y) ]
[(N-3)/2]
+ Z Z [BI‘N—’)n—&i ( 2,,+';(y)) + B?,N—?n—s,ix
Pq
n=0 p+q<N+J-2n-3 0 "
( 0 [(N-5)/2] 0 s
Pg22 )]‘f‘ [BIN AREBR ( 12 )+
Vonia(y) ﬂz___‘:) p+qSN§—2ﬂ B V'zp:+5(y)
. ; Pql2
+B;‘,IN—271—-5,| ( Vm+5(y) )] (7)
U2 (y) Qnily)
Bth( ((y) Bzm( J)=(N1J _
p+q§l+.1[ e \ U (y) e U”w(ﬂ) ] Qna(y)

[N/2]
_ Z z [Bz,N—zn,i (U::l;(y)) 4+ BLN-m (U::;z( ))]_
Pq rq
n=1 p+q<N+J-2n Y ( ) B (y)

(N -3)/2]

—2n-—-3,7 V'qu‘u ‘ —2n—3,7
- Z Z [B;:IN 2n-3, ( anS(y))+B::IN =37 o

n=0 p+g<N+J-2n-3

(vaetan )1 - D (vestin) *

n=0 p+g<N+J-2n-5

+ BN 57( 2ﬂ+5(y))]

rq 0

It is assumed that in (6), (7) only the sums where the upper limits are not
less than the lower limits are considered.

The equations (8), (7) are solved sequentially for N = 0,1,2 etc. For
every N equations (6), (7) correspond to the solution of static problem with
polynomial loads. The equations (6), (7) are equalities between polynomi-
als. Equating the coeflicients of these polynomials one obtains a sequence
of linear equalion systems relatively unknown constants Bf,;"", Bj,:’;‘". The
developed method in case 8 = 0 leads to the constructive procedure for the
analytical solution of static problem for elliptical crack under arbitrary poly-
nomial loads. The detailed description of the proposed analytical procedure
in case of stalic polynomial loads is presented in Kaptsov and Shifrin (1),
(2). In case 3 # 0 the method leads to the analytical calculation of arbitrary
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amount of Taylor’s series expansion coeflicicnts of the solutions of (1), (2).
Thus the developed procedure gencralizes a number of papers where analyt-
ical solutions for static problems were obtained and only several coeflicients

of Taylor's series were culculated for some time-harmonic problems.

NUMERICAL RESULTS

To obtain the high accuracy approximation of the solutions of equations
(1), (2) in the range of intermediate frequencies Pade approximnants are used.
The detailed description of Pade approximants and the conditions for their
convergence is presented in Baker and Graves-Morris (3). Here we only
remaind that there is exist an infinite matrix of Pade approximants [I./M].
For the convergence of Pade approximants a sequence of diagonal clements
of the matrix [I./L] or parallel to them [L/L. £I] bave to be taken. For
the special case of uniform normal time-harmonic load the outlined method
was developed in Kaptsov and Shifrin (4). Here consider the problem for
penny-shaped crack of radius a under shear time-harmonic loads. Let the
amplitudes of applicd load be ¢t = (1,0,0). The stress intensity factors at
the point 2/ of the crack front for the dimensionless wave number 2a denote
via Krr(Ba, z!) and Kprr(Ba, zt). The graphs of normalized stress inlensity
factors K},(Ba,2!) = | K r(Ba, 2|/ K1(0,21) at the point 2/ = (a,0, 0} and
K3, (Ba,2) = | Krr(Ba, 2)|/ Krrr(0, 2) at the point 2 = (U, 4, 0) for Poisson’s
ratios v = 0.1, » = 0.3 and v = 0.5 are depicted in Figs | and 2. The
problem concerning stabilization of numerical results with increase of Pade

approximants order will be discussed in the next publications.
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Figure | Normalized Ky

Figure 2 Normalized Ky
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