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A NUMERICAL MODEL FOR CRACK GROWTH IN BRITTLE MATERIALS
BASED ON THE ELEMENT FREE GALERKIN METHOD

D. Hegen*

A numerical model for element free simulation of crack propagation in
two dimensions is presented. The model is based on the Element Free
Galerkin method which has as key features a topology free way of defini-
tion of shape functions and an integration pattern which can be chosen
almost independent of the set of shape functions. Therefore, when a
crack advances, minor changes have to be made to the discretization
for shape functions and to the integration pattern. A description of the
main features of the EFG-method is given.

INTRODUCTION

A widely used numerical method for the simulation of crack propagation is the well known
Finite Element (FE) method, see for instance Hughes [1]. Since for this method the
material under consideration is subdivided into so called elements, the method is based
on a mesh, i.e. a topology, of nodal points. Hence, when a crack advances, remeshing
is necessary to reflect the changing geometry of the material. However, remeshing is a
costly process and a lot of mesh generators can not handle each crack configuration.

The Element Free Galerkin (EFG) method, see Belytschko et al. [2], [3] and Lu et
al. [4], is a numerical method which can be seen as a method that is topology free. This
makes the method convenient for the simulation of crack propagation, since adaptation
of a mesh is not necessary when a crack advances.

The EFG-method is based on Moving Least Squares Approximation (MLSA), see
Lancaster and Salkauskas. [5]. For this topology free way of approximation only a set
of nodal points in the material, a locally supported weight function for each nodal point
and a set of basis functions are necessary, see figure la. By means of a least squares
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procedure one obtains a set of shape functions {¢;}i=; ... These locally supported
shape functions depend on the nodes, the weight functions and the basis functions and
fail in general to have the property that ¢;(x;) = 6;; (i.e. 1 when ¢ = j and 0 when
i # j), where x; is a nodal point. The least squares procedure, however, makes MLSA
computationally expensive, since for each point under consideration a linear sytem has
to be solved to obtain the values of the shape functions.

As material behaviour linear elasticity is assumed which means that we focus on
brittle materials. To apply a certain fracture criterion to decide whether a crack tends to
propagate, accurate values for displacements, strains and stresses in the cracked material
should be available. Approximate values for these quantities are obtained with the help of
the MLSA-shape functions {¢;}i=1,..n. A weak formulation of the problem description
for the deformation of linear elastic material is used where essential houndary conditions
are accounted for by a set of (discrete) Lagrange multipliers. With setting

u:Z@'d, (1)

i=1

for the displacements and the test functions in this weak formulation, and taking a similar
form for the Lagrange multipliers, a linear system of equations is obtained for the un-
knowns d;. Solution of this system results in the approximation (1) for the displacements
and after derivation, in approximations for the strains and stresses in the material.

To obtain the linear system for the unknowns d; integrations over the material
and its boundary have to be performed. Therefore, as proposed in [2], a split up of the
material and its boundary is made into integration cells, see figure 1h. For each cell the
integrals are numerically evaluated by means of Gauss integration. Summing up over all
cells results in the linear system.

The shape functions obtained by the least squares process are quite general, and
are not, as for the FE-method, piecewise linear or piecewise quadratic. This means that
there is no optimal integration pattern. One can say that the integration pattern can
be chosen more or less independent of the MLSA-discretization. There should only be
accounted for a sufficient accurate integration pattern. Therefore, cell sizes are taken
of the order of the mesh size of the nodal distribution and in each cell the number of
integration points nin: is taken to be

Nint ~ max(3n., 1), (2)

where n. is the number of nodes in the cell.

EFG IN FRACTURE MECHANICS

The present work differs from that presented in [2], [3] and [4]. A different approach is
used to model a crack in the material, a special function is added to the basis to capture
the singular behaviour in strains and stresses near the crack tip and an integration pattern
is proposed which requires only minor changes to reflect crack propagation.
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For a correct performance of the EFG-method it is necessary that the supports of the
weight functions are of order two or three times the mesh size of the nodal distribution.
Hence. in the neighourhood of a crack the shape functions will he continuous over the
crack, which is in contrast with the fact that quantities in general are discontinuous over
the crack. Therefore, for the nodal points in the neighbourhood of a crack its weight
function is modified such that it becomes discontinuous over the crack, but continuous
in the material, see figure 2a. This yields shape functions which are continuous in the
material, but which are discontinnous over the crack. Such a modification is obtained
by means of premultiplication of the initial continuous weight function with a function
which is discontinuous over the crack. In 2], [3] and [4] a modification of weight functions
is nsed which leads to shape functions which are also discontinuous over a line in the
material.

In the neighbourhood of a crack tip stress concentrations occur. In case of linear
elastic material behaviour, the stresses near the crack tip hehave like 1/y/7, where r is
the distance to the crack tip. In the EFG-method this singularity in the stresses can he
easily captured by means of adding a (local) function to the set of basis functions which
behaves like /7. Addition of such a function has the consequence that the MLSA-shape
functions behave like VT in the neighourhood of the crack tip. Hence, the derivatives
show a singular hehavionr. Special integrations cells are then necessary near the crack
tip for sufficient acenrate integration.

In each computation step the pattern of integration cells has to match with the crack
configuration, i.e. it is not allowed that a (part of a) crack lies in the interior of a cell.
To avoid the problem of a complicated redefinition of the cell pattern after a propagation
step, integration cells are used which themselves can account for a crack. When a (part
of a) crack is present in the cell, it is subdivided into a small set of triangular cells which
match the crack, see figure 2b. The cell contribution to the linear system is then obtained
with the help of these triangular cells. Moreover, these cells are also used in the next
computation steps. Hence, almost a fixed cell pattern is used; only cracked cells in this
pattern will be replaced by a subdivision.

COMBINATIONS OF EFG and FE

The least squares procedure to come to shape functions makes the EFG-method compu-
tationally expensive. Therefore, it is more convenient to make use of the EFG-method
in combination with the more cheaper FE-method. The part of the material which is
cracked is handled by means of the EFG-method and for the remaining part of the mater-
ial the FE-method is nsed. When the crack propagates into the FE-area, elements which
are cracked are replaced by an EFG-discretization. Such a combination still requires
minor changes to reflect crack propagation.

When a material is subdivided into a FE-area and an EFG-area, one should acconnt
for a coupling between both parts. Several conplings have already been studied, see for
instance Hegen [6] and Belytschko et al. [7].

989



ECF 11 - MECHANISMS AND MECHANICS OF DAMAGE AND FAILURE

NUMERICAL RESULTS

A simple two dimensional example is presented. A flat plate with initial crack as shown
in figure 3a is considered. The initial cell pattern is shown as well. The plate is loaded
by means of a vertical traction on the horizontal boundaries of the plate. A fixed set of
nodes is used together with an extra radial pattern which is situated around the crack tip,
see figure 3h. The crack is represented as piecewise linear. In each step, the value of the
J-integral is computed by means of contour integration aronnd the crack tip. The new
crack tip is then chosen by means of a fixed step in the direction given by the J-integral.

In figure 4a the computed crack path is shown together with the initial cell pattern.
In figure 4b the cell pattern of the last step is shown.

CONCLUDING DISCUSSION

From the previous considerations one can conclude that the EFG-method is a flexible
numerical method for the simulation of crack growth. Propagation of a crack can be
reflected by only some small changes to the discretization for approximation and to the
integration pattern. Moreover, the singular stresses around the crack tip can be easily
captured by means of addition of a special function to the basis.

Drawback of the EFG-method is that the method is computationally expensive.
Therefore, a coupling with the FE-method is recommended. Furthermore, due to the
freedom for choices for sizes of supports of weight functions, for nodal distributions and
for integration patterns, it is not possible to find an optimal set np for the method.
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Figure 1: (a) MLSA-discretization, (b) pattern of integration cells
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Figure 2: (a) Weight function modification, (b) internal subdivision of integration cell
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Figure 3: (a) Initial cell pattern and crack (b) Nodal distribution
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Figure 4: (a) Computed crack path (b) final cell pattern
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