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A MODEL OF DAMAGE AND FRACTURE BASED ON FUZZY SETS
THEORY

L.L.Mishnaevsky Jr and S.Schmauder *

Damage evolution and fracture in nonhomogeneous
materials is modeled with the use of the methods of the
theory of fuzzy sets. The concept of damage as a
membership function of the material into a fuzzy set of
failed material is formulated. This concept is applied to
model the damage evolution in a nonhomogeneous material.
The damage in a loaded material versus time relation is
obtained numerically. The influence of damage on the
intensity of the destruction of material is studied as well.

INTRODUCTION

The heterogeneity of material and stochasticity of microfracture and damage
formation have a pronounced effect on the strength and fracture of materi-
als, but can be hardly modeled with the use of the traditional methods, like
the fracture mechanics or damage mechanics. It is supposed usually that the
stochasticity of fracture is determined by the statistical effects in materials at
microlevel. Yet, the stochasticity of some processes of damage evolution and
fracture is caused physically by the uncertainty of material behaviour at micro-
(down to atomistic) level. Statistical models present only mathematical appro-
ximation of the uncertain behaviour or structure of materials.

Here, it is suggested to use the mathematical methods of the theory of fuzzy
sets to model the destruction of materials. These methods make it possible to
take into account the stochasticity and uncertainty of material behaviour as
well as the influence of the material heterogeneity on the strength and damage
evolution.
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FUZZY MODEL OF DAMAGE

Conditions of local failure of any real material are uncertain. So, a region of
elastic behaviour of a material, which is limited by this condition, can be consi-
dered as a fuzzy set, i.e. aset with noncertain border, the degree of membership
in which is varied from 0 to 1 (see Kauffmann (1)). The complement of this
set is a fuzzy set of state of a destructed material. The membership function
v of a material into this fuzzy set characterizes the degree of closeness of the
body to failure. In the continuum damage mechanics, the damage parameter is
considered often as a measure of closeness of loaded body to failure (Lemaitre
(2)). This meaning of the damage parameter corresponds evidently to this
membership function, which we just defined, and that is why one can use the
short term “fuzzy damage parameter” instead of “membership function of the
material into the fuzzy set of failed state”. The function v can be considered
as some kind of generalization of the probability of fracture, but it characteri-
zes not the possibility of transition from one state to another (failed state of
material), but the present state or kind of behaviour of the material. Generally
speaking, the function 7 can be related with any continuously growing from
monolithic to failed state value, or determined with the use of people experience
and knowledge as it is customary in applications of the fuzzy sets . Yet, if one
notes that the change of the function  proceeds only in the direction from y=0
to 1 (it is evident from thermodynamics and the physical nature of fracture),
one can consider the value v as a degree of irreversibility of the evolution of
the material. That makes it possible to relate y with the accumulated entropy
per unit volume of material.

FUZZY DESCRIPTION OF THE HETEROGENEITY OFF MATERIAL

The uncertainty of damage and fracture is caused not only by the uncertainty
of destruction as such (stochasticity of microfracture), but also by the hete-
rogeneity of the material. The data about the physical properties and local
strength of material are uncertain, and it is caused by the availability of voids,
inclusions, grains, etc. A homogeneous body with strength o, for example, can
be taken as an element of the set of materials of given strength o with the
membership degree 1. Yet, if one considers real materials, this set presents
a fuzzy set: the strength of material depends on size, conditions of loading,
dislocations distribution and movement, etc.; it turns out that the strength of
the body is a averaged strength, and this membership degree is less than 1.
The greater the difference between local properties of material and its total
strength, the less the membership degree of this material into the fuzzy set
of materials with given strength. So, one can define the membership function
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n(0), which characterizes the closeness of behaviour (strength) of the material
to a homogeneous material. The heterogeneity of the material can be characte-
rized by by the statistical entropy of local properties (strength) of the material
as well. The relation between the function 7(o) and the statistical entropy
looks as follows (Kauffmann (1)):

H = —n(o)Inn(o) — [1 — n(o)]In[1 - n(0)] (1)

where H - the statistical entropy of local properties (strength) of the material, o
- the strength of the material. The greater is the heterogeneity of the material,
the less is the value 7(c), and the greater the statistical entropy of the material
properties.

FUZZY DAMAGE PARAMETER FOR HETEROGENEQUS MATERIALS

It is clear that the function 7 is determined by the local strength of mate-
rial. Thus, this membership function is a conditional one (Kauffmann(1)), and
depends on the heterogeneity of the local strength of the material, which is
characterized by the function 7. In this case, the fuzzy damage parameter is
determined by the following formula:

where 7(|o) is a conditional fuzzy damage parameter for given strength of mate-
rial. Eq.(2) gives the relation between the heterogeneity of material properties
and the damaged state in the material.

Consider the fuzzy damage parameter for a body with a crack. Such body
can be presented as a body from two components (or phases, Mishnaevsky
Jr (3)). The value 7 for a first phase (i.e. crack) is relatively large, and
does not depend on applied stress. This value for the rest of material is an
increasing function of local stress. So, one can apply the results obtained for
multicomponent system, to a body with a crack. For the system which consists
on several independently loaded elements (phases) (the crack and the rest of the
body do not interact directly, only through the stress field), the fuzzy damage
parameter can be calculated as follows: v = 1 — MAX[1 — 7,1 — %(|0)],
where 7; and 7, are the values of the fuzzy damage parameter for the crack
and the rest of body, respectively. Taking into account the formula (2) and
the unequality y; > -y, , one can conclude that the fuzzy damage parameter of
cracked body is equal to this parameter for the most stressed part of the body,
i.e. for the fracture zone in the vicinity of the crack tip.
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DAMAGE EVOLUTION IN HETERQGENEOUS MATERIAL

Suppose that the loaded material is homogeneous initially, but it becomes more
heterogeneous due to the damage evolution. In this case, only the damage
distribution determines the heterogeneity of body, which is characterized by
the function 7. So, this function can be considered as a membership function
of the complement of the fuzzy set of failed state of the material. One can
write: n(ai) = 1 — (o). This formula describes the heterogenization of local
properties of a loaded material due to damage accumulation. Substituting it
into eq.(2), one can obtain the damage evolution law for the local fuzzy damage
parameter in the following form:

mrar=1—- MAX[1 - Y(loi)], (3)

where t and t-+At mean two successive timesteps, i - local strength which is
changed due to the damage formation. Eq.(3) presents the damage evolution
law in the recursive form for initially homogeneous material.
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Fig.1 shows the fuzzy damage parameter versus time relation obtained nume-
rically with the use of eqs.(2) and (3). The time is given in timesteps, in
correspondance with the recursive formula (3). The damage parameter y was
taken to be constant initially and equal to 0.001. The material was supposed
to consist on 20 components, but the value 7 for one of the components is equal
to 0.999 (it means that the material is practically homogeneous). The increase
in the fuzzy damage parameter for each timestep was calculated by formula
(3). It is seen from Fig.1 that the fuzzy damage parameter increases with time
(at constant load). The curve shown on Fig.1 consists on three parts: first,
the damage parameter grows almost linearly with time, but the rate of damage
growth is rather small; second, the rate of growth of the damage parameter
becomes sufficiently greater, and, third, the rate of damage growth decreases
and approaches to zero, when the damage parameter approaches to 1. The
transition from 1st to 9nd stage occurs at 7y is about 0.1 ; the transition from
ond to 3rd stage occurs at ¥ is about 0.85. The first stage of damage evolution
corresponds to the independent formation of microcracks in the material. This
stage is finished when the microcracks coalesce and form cracks, which begin
to grow authocatalytically (Mishnaevsky Jr(3)). Then, the cracks grow with
growing velocity, and it corresponds to the second stage, which is finished by
dividing of the body into parts. The third stage corresponds to the destruction
of a cracked body, up to crushing. The fact that the damage growth rate at
third stage is sufficiently less than that at 1st or 2nd stages, is confirmed by the
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well-known experimental observation that the energy consumption in crushing
of a material is much more than at the formation of initial cracks (Mishnaevsky
Jr (4)). The energy needed to crack formation due to the damage coalescence
is greater than the specific energy of crack growth as well ; this theoretical
result obtained on the basis of the fractal model of fracture (Mishnaevsky Jr
(5)) corresponds to our conclusion, that the damage growth rate at initial stage
of destruction is much less than at 2nd stage.

CONCLUSIONS

It is shown that the methods of the theory of fuzzy sets can be effectively used
in modelling damage and fracture of materials. As differentiated from the pro-
babilistic methods, the methods of fuzzy set theory make it possible to allow
not only two states of a body (i.e. elastic one and failure), but also all inter-
mediate states as well as the states of material between cracked and crushed
ones; these methods allow also to study the influence of the material heteroge-
neity on its properties. On the basis of the developed model, it is shown that
the dependence of the fuzzy damage parameter in loaded body versus time is
determined by the degree of destruction of the loaded material; the rate of
damage evolution in a low- and high- damaged material (i.e. when the damage
parameter is less than 0.1 or greater than 0.85) is much less than that in a
medium- damaged material.

Acknowledgements. The author (L.M.) is grateful to the Alexander von
Humboldt Foundation for the possibility to carry out the research project in
the University of Stuttgart, MPA (Germany). The author (L.M. also) was first
introduced to the theory of fuzzy sets by Doz.Dr.H.P.Rossmanith, Institute of
Mechanics, Technical University of Vienna (Austria). Interesting discussions
with Dr.Rossmanith during my work in the Photo and Fracture Mechanics La-
boratory, TU Vienna, and his valuable advices are gratefully acknowledged.

SYMBOLS USED

H = statistical entropy of the local strength distribution

v,7, Y2 = membership function of the body into the fuzzy set of failed state
of material (fuzzy damage parameter), and the values of «y for a crack and
non-cracked material, respectively

n(0) = membership function of the body into the fuzzy set of a materials
with strength o

o = local strength of material, or some component of the material
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Figure 1 Plot of fuzzy damage parameter versus time
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