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A COMPARISON OF CLASSICAL CONTINUUM ME-
CHANICS WITH A DISLOCATION MODEL TO DE-
SCRIBE CYCLIC CRACK TIP PLASTICITY

Franz O. Riemelmoser!, Reinhard Pippan!

In the threshold regime of metals the fatigue crack growth rate is well
below the predictions of the Paris relation, even if crack closure is taken
into account. The deviation might be a result of the discrete nature
of plasticity. To reveal differences between a continuous and a discrete
description of plasticity we have developed a dislocation model. In this
study our model is adopted to describe cyclic crack tip plasticity at a
stationary mode I fatigue crack. Our results are compared to predictions
of Rice’s slip line model.

INTRODUCTION

It is generally recognized that the controlling parameter for fatigue crack
growth is the cyclic plastic deformation at the crack tip. To get reliable pre-
dictions of the crack growth rate it is necessary to connect ACTOD (cyclic
crack tip opening displacement) with the global loading (usually characterized
by the far field stress intensity factor AKjgiobal). At present relation derived
by Rice [1] by means of continuum mechanics are commonly used. However,
the applicability of these equations are limited: First, the size of the plastified
region has to be small compared with overall specimen dimensions (i.e. crack
length, specimen width, distance between the crack tip and the points of force
application). Secondly the plastic zone size must be large in comparison to
microstructural parameters (e.g. grain size, separation distance of slip bands,
width of PSB etc.). Under service conditions the applied global loading is usu-
ally small, i.e AKjoba is in order of the threshold value, and no difficulties arise
with the upper limit, but ACTOD is often not much larger than the Burgers
vector (3 -107'%n) of a lattice dislocation. One might guess that in this case
the plastic deformation at the crack tip and, hence, the fatigue crack growth
rate is significantly influenced by the microstructure, crystal anisotropy and
the discrete nature of plasticity. There are some investigations concerning the
influence of microstructure (e.g. [2]) and crystal anisotropy (e.g. [3]) but the
discrete nature of plasticity has not been paid proper attention to so far. We
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have developed a discrete dislocation model which enables the investigation of
a discretized plastic strain field.

The differences between the discrete description of plasticity and a continuous
one are highlighted by a comparison of the discrete dislocation model with its
continuous counterpart, the slip line model of Rice [1]. Crack tip plasticity was
also modeled as motion of discrete dislocations by Li [4], Dai and Li [5], Pippan
[6] for mode II and mode III cracks. Atkinson and Kay [7], Atkinson and
Kanninen [8] and Lakshmanan and Li [9] considered dislocation arrangements
at mode I cracks. These authors did, however, not reveal the fundamental
differences between the discrete and a continuous description of plasticity.

DISLOCATION MODEL

The fundamentals and the procedure of the discrete dislocation model are
explained in detail elsewhere [10]. Because of space restriction they are not
repeated here. However, we recapitulate some important points in order to
keep the readability of this study.

e In our simulation plasticity is described as motion of distinct edge disloca-
tions. For the present study the dislocation model was adopted to describe a
stationary mode I fatigue crack. The purpose of the investigation is to reveal
differences between a discrete and a continuous description of crack tip plas-
ticity. In our opinion the differences are the easier seen the simplier the model
is. For that reason we developed a model which is equal to Rice’s slip line
model but with one distinction. Rice [1] described plasticity in terms of classi-
cal continuum mechanics, whereas plasticty is discretized in our investigations.
Thus, we consider an unbounded body, which is cut along the negative z;-axis.
Plasticity is permitted on two planes symmetrically to the crack propagation
plane.

e The dislocations are originated at the crack tip. Dislocation generation at
internal sources (e.g. Frank-Read source) is not allowed in our simulations.

e A crack tip is shielded by dislocations, i.e. there is a difference between the
far field Kgioba and the crack tip field kjoca. The plastic flow (i.e. the motion
of the dislocations) is controlled by Kjiobal, whereas dislocation generation is
solely determined by Kiocal- A pair of dislocations is emitted, when kjoca reaches
a critical value ke [11].

e A dislocation feels a Peach-Koehler force. For convenience is split into a
slip and into a climb component (Note that only edge dislocations are emitted).
Since in our simulation the dislocations are not allowed to change their slip
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plane the motion of the dislocations is controlled by the slip force. A dislocation
is in rest when the slip force is less than the lattice resistance, otherwise the
dislocation moves in the slip force direction.

e Due to the emission of a (positive) dislocation CTOD increases.

These are the important points in the loading procedure. A resulting disloca-
tion arrangement is depicted in Fig. la. During unloading some dislocations
near to the crack tip are forced (by the other dislocations and due to the at-
tractive force of the free surface) to return to the tip, where they emerge (
i.e. in the simulation they are removed). Due to the emergence of the disloca-
tions CTOD decreases. Parallel with the reduction of Kgoba the local stress
intensity kiocal decrases. Once kjocal becomes less than —k. “negative” disloca-
tions are generated. For clarity, dislocations emitted in the loading sequence
are called “positive”. “Positive” and “negative” means that the sum of Burgers
vectors? of a dislocation pair points into the positive and the negative z,-axis,
respectively. CTOD decreases upon emission of negative dislocations. In our
simulation a positive and a negative dislocation annihilate if their separation
distance becomes less than 10 b, here b is magnitude of the Burgers vector.

Material Parameter: The elastic constants are those of iron, i.e. shear modulus
it = 80G Pa, Poisson ratio v = 0.3. The critical stress intensity factor ke =
0.5M Pay/m. The angle of inclination was chosen to minimize the energy
required for dislocation emission o = 70.5° and the friction stress is in the
order of the lattice resistance of bee metals 79 = 12/2000.

RESULTS

In our simulations we have left the material properties (ke,79) constant, Kpin
was always set equal to zero but we varied the maximum load Kyax in order
to study the differences between the two models (discrete dislocation model,
slip line model) as a function of loading. A typical dislocation arrangement is
shown in Fig. 1.

In Fig. 2 the alteration of the global loading in a single run (Kmax=4 ke) and
the corresponding variation of the local stress intensity is shown. Note that our
calculations are based on the static equilibrium and compatibility conditions.
Consequently, time does not enter into our simulation and the time scale in
Fig. 2 is given in arbitrary units. The diagram shows that kica is always
between® +k. and —k,. The reason is the full shielding of the crack tip by

2The sign of the Bugers vector is determined by the RHSF convention

31t is interesting to note that due to the limitations of kjocal the term “local driving force”
is physically nonsensical. A further discussion of the significance of dislocation shielding on
fatigue fracture theory is given elsewhere [12]
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Figure 1: Discrete dislocation arrangement. a) at maximum load Knax = 1.5k,
b) at minimum load Ky, = 0.0
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Figure 2: The behavior of Kyopar and kjgcar during one loading cycle.

those dislocations which are generated due to the cyclic loading.

In Fig. 3a the development of the monotonic plastic zone size during the first
loading is depicted . w is the maximum extent of the plastified region. The
results are plotted in a log(w)-log(Kgoba/ke) diagram, ie. the maximum
extent of the plastified region in Rice’s slip line model [1] appears as straight
line with a slope equal to 2. For large Kgonal levels both the classical continuum
mechanics and the discrete dislocation model lead to the same result. For small
Kigiobar (less than 3 ko) large differences appear. They are caused by a lack of
plasticity at K levels smaller than k.. Analogously appears the change of 4,
(= CTOD) with increasing Kgoba in Fig. 3b. Again there is a comparison to
Rice’s solution [1].

The influence of the discretized description of plasticity on a cyclically loaded
crack is depicted in Fig. 4. Fig. 4a shows the dependence of the Ad; on the
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Figure 3: a) Monotonic plastic zone size and b) the crack tip opening displace-
ment in units of Burgers vectors as a function of Kgiobal
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Figure 4: Comparison of the estimated a) cyclic crack tip opening displacement
Aé and b) cyclic plastic zone size with predictions of continuum mechanics.

We assume that at high Kgpa-levels (> 10 k,) the discrete dislocation model
would predict ﬁﬁ = 0.5. Then both the dislocation model and the classical
continuum mechanics lead to the same result.

In Fig. 4b the evaluated % ratios* are compared to their “theoretical” value
0.25. The fitting line (—) which is shown in the diagram is based on the
assumption that for high AK levels the dislocation model should approach
asymptotically the classical continuum mechanics result.

CONCLUSION

4The cyclic plastic zone size Aw is the size of the region of cyclically moved dislocations.
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The comparison of the discrete dislocation model and its continuous counter-
part, Rice’s slip line model, clearly demonstrated that:

e The plastic strains and, consequently, CTOD are overestimated by clas-
sical theories; the deviations become insignificant at large Kgiobar levels.

e The differences are even more pronounced at cyclically loaded cracks.
In the threshold regime of metals the fatigue crack growth rate is well below

the predicted one by the Paris relation, even if crack closure is taken into
account. In our opinion this is caused by the discrete nature of plasticity.
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