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VALIDITY OF J ESTIMATION IN PIPING COMPONENTS BASED ON
R6/3 OPTION 2 K. - L. RELATIONSHIP

Ph. GILLES®, A. PELLISSIER TANON *, C. FRANCO¥, J. VAGNER*

The R6/3 option 2 K - L; relationship provides a convenient way
to determine an approximate value of J in a non-linear material
from the elasticity computed value J°. The K;-L; relationship
depends only on the material stress-strain curve, therefore the
determination of Ly leads to the K value and J is given by the
ration J¢/K. This paper examines the conditions ensuring the
validity of such an approach and presents four examples of
application to surface cracked components.

INTRODUCTION

In nuclear power plants, most of safety analyses require parametric defect
assessment studies in components subjected to several types of loadings. Due to the
high level of the considered loadings under faulted condition, or of thermal shock
loadings in some operational conditions, one has to consider the non linear
behaviour of the materials. The analyses are generally performed using simplified
methods which estimate J from the Stress Intensity Factors ( SIFs ) of the elastic
solution through a plasticity correction.

EDF+ , CEA* and FRAMATOME* have therefore developed a substantial
effort over a number of years to establish and validate simplified Fracture
Mechanics methods. Among currently used methods, the R6/3 option 2 approach
developed by Ainsworth (1), and incorporated in the revision 3 of the R6 procedure
(2), offers a very convenient way of deriving the plasticity correction. This method,
validated on two-dimensional cracked geometries, has been applied to three
dimensional cracked structures like plates, pipes (3,4,5,6) and more recently tees

.
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The key issue for the applicability of the method is the existence of the
scaling parameter Ly and the determination of the reference load which defines L.
The analysis of several recent experimental and numerical results enables
clarification of the definition of this reference load. In the four three dimensional
(3D) cases presented in this paper, the J values obtained through the R6/3 option 2
method, with properly defined reference loads, are very close to the J values
obtained by numerical elastic-plastic computations.

DEFINITION OF J AND EXAMINATION OF THE BASES OF J ESTIMATION
SCHEMES

Definition of the fracture parameter J in non linear elastic three dimensional
structures

In two-dimensional cases, J. Rice (8) demonstrated that the rate of decrease
of the potential energy per unit of crack length could be represented as a path-
independent integral J.

This definition still holds for three dimensional structures under thermo-

mechanical loading :

JdIl
J= WY (e))
where II= ¥ - W is the potential energy
Y is the free energy and W the work of the external forces.
A is the cracked area.

The derivative of IT is considered with respect to a crack extension
which has to be tangent to the crack. This extension may be local,
giving a local J, or correspond to a global change of the crack shape.

Rice's path independent integral has been extended to 3D cases by
Destuynder (9) and de Lorenzi (10). Both proposed equivalent formulations of
domain integrals. The numerical results presented in this paper have been obtained
using the G-0 method (9).

Under an applied displacement q and a purely mechanical loading, we get :

an
J=—££ g 9d 2

where Q is the reaction force

Extension of the definition of J to elastic-plastic fields
For a non-linear elastic material, a relationship between J and the amplitude

of the singular fields has been evidenced by Hutchinson, Rice and Rosengren, but
only in the 2D case ( the HRR field ). These results are only valid in the frame of
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the J2 Deformation Plasticity Theory ( D.P.T.(11)) which may be used to describe
the plastic behaviour of a body under the following assumptions:

_ isotropic behaviour,

_ incompressibility (in full plasticity),

_ loading depends on only one parameter and increases monotonically,

_ tensile behaviour is described by a power law,

_ plastic behaviour obeys the Prandtl's stress-strain laws,

_ elastic strains are small compared to the plastic ones.

For a monotonically increasing proportional loading, the differences
between incremental elastic-plastic theory and DPT are small, in 2D and 3D cases,
provided the stress-strain law is also monotonic. The demonstration showing that J
defined by (1) is suitable to describe the initiation of ductile tearing, and to analyse
stable and unstable ductile crack growth, rests on the assumption of the dominance
of the HRR field. An analysis of the applicability of this definition of J to 3D
conditions is given in (12).

This paper does not consider the question of the validity of J defined by (1),
as a fracture criterion. It only examines the validity and accuracy of the R6/3 option
2 approach as a simplified method to estimate J in 3D configurations.

Fundamental assumptions of the J estimation schemes

All the J-estimation schemes are based on the DPT hypotheses. Moreover, they
assume that the elastoplastic response of the body is given by the superposition of
the elastic and fully plastic solutions :
q=q°+q" = J=J+]J° (€)
Shih demonstrated this equation to be exact for a two-dimensional plate under shear
loading. Generally, this is only an approximation, so that J is obtained comprising a
plastic correction on the elastic term (13) :
J=J%+]° “
The J€ term is obtained from SIF analytical or tabulated solutions.
The JE€ is the J€ value for an adjusted crack length given by:
a®=a+ dr, where a is the crack length, r, Irwin's plastic zone correction

and @ an adjustment factor chosen as l/( 1+(Q/Q, )2 ), the scaling load
Q, being defined hereafter.

Derivation of the plastic component of J

Illyushin has shown (11) that in DPT the load-displacement relationship takes the
same form as the stress-strain law:
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8/’ = 8‘0 ('g—) =P qp = EO L( A,n)(—QQ—) (5)
0 0

where Q, =0, 8o A,n) is an arbitrary scaling load.

(5) may be written as:

I/n P 1/n
Q=Q, (%;) (9_) = G g(A, n) h(qp > n) (6)

€

1 1/n qp I/n
with = — . h=|— 6
g=28o (L) ( e ) (69

showing the separability of geometric and load variables.

From (2) we get .
v aq°
2 u’
== dq® = — 7
5 IQ q ng N

0

where g'is the derivative of g with respect to a crack size parameter corresponding
to a given crack shape and pattern of crack extension
U is the strain energy and S is a scaling area
The 1 factor is a non-dimensional function of the cracked geometry and the
hardening exponent n.

Derivation of the R6/3 option 2 method

This method leads to 2 J formula which depends on the material properties
only through the stress-strain law. This avoids any fitting of the stress-strain curve.
The method allows derivation of J from je through a plasticity correction K, which
is a function of the stress-strain law and the load to reference load ratio L.
Reference loads have to be defined for each type of geometry and loading.

J

P A ®)
[x.(L)]

Owing to the fundamental part played by the reference load, this method is also

called the reference load approach.

This method has been developed by Ainsworth (1) using the GE-EPRI
results (13). The approach derives from the above mentioned basic relationships, as
shown in the following. Considering the load-displacement equation (5) and the J°
formula (7), we get

ol n+l
- o)L Q
J —Goaon+1( g)L (Qo) C))
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which has the same form as the basic GE-EPRI (13) formula:

n+l

J’=0,¢,Bh, [E)g) with h,, =h,(A,n) (10)
0

Ainsworth simplifies and generalises the GE-EPRI expressions by making four

supplementary hypotheses ( H1,H2,H3,H4).

The h,, values depends on Q,, but Hl hypothesis assumes that an
appropriate selection of Q, can make h, independent of n according to:

n+l
(Hl) h,=h,, [%-) (11), where h, ; depends only on the geometry.
ref
This allows us to write: JF= Bh, 0, €, (12)
where G, =0, Q (13)
Qref
and €, is the corresponding plastic strain on the material curve.

The second hypothesis (H2) consists in the generalisation of these results to
any type of stress-strain law.
For a linear behaviour:

2 a2
J*=puBh, Gl_‘_;f with p = in Plane Strain or L =1 in Plane Stress.
T
Using the GE-EPRI plastic zone correction, we get: Je=J° ( 1+d-L )
a
Therefore:

r, h . (E
i=1+ q)_Y_+ Iref Ercf —i]
Je a u hll cn:f

is the total strain.

_ Gref P
where €, = B + €l

The H3 hypothesis consists in the assumption that h, , =uh, .
Then, Ainsworth rewrites the plastic zone correction and obtains the relationship :

[1¢ >  Be,|°’

K.=,— = R 14
' J {2i1+L2,i O s ] W
The R6/3 document (2) uses another plastic zone correction, which gives slightly
different K values:

1
e 2 )
K = ;I__ — Lr Gref 4 Eeref (14')
2Ee (¢]

ref

Lastly, Ainsworth takes the yield limit load as the reference load. This constitutes
the (H4) hypothesis which will be discussed in the next paragraph.
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DISCUSSION OF THE SIGNIFICANCE OF THE REFERENCE LOAD
APPROACH

It is suggested in (12) that the structure of the load-displacement relationship
(6), in which the crack geometry parameters and the displacement are separated
variables, implies that the plastic strain field follows a well defined pattern for a
large range of load level and crack size. The proposal is also true in reverse. Such
an overall deformation mechanism ensures the applicability of the DPT. Reference
(12) derives very strong experimental and analytical evidence of this behaviour
from experiments conducted on austenitic through-wall cracked pipes under
bending (14).

In a Rigid Perfectly Plastic material, this pattern is the kinematic
deformation field (the slip-line field in 2D conditions) corresponding to the limit
load. In a strain hardening material, under a proportional loading, the same type of
deformation pattern exists but the strain localises in shear bands instead of slip
lines.

These remarks lead us to consider that the reference load should be defined
as the load above which the plastic strain field presents that specific pattern. This
load is the yield limit load based on the material conventional yield stress computed
over the area where the overall deformation mechanism develops (e.g. a plastic
hinge in the cracked section or the collapse of a short ligament ). In a 2D structure,
it is logical to associate this load with the full yield of the cracked cross section.
This state can unambiguously be defined in the deep crack situation, when the
plastic zone grows from the crack tip towards the opposite free surface. So, the
reference load may be obtained through a classical numerical elastic-plastic analysis
of the structure.

A more general definition of the reference load, namely applicable to 3D
cases and experiments, may be obtained by considering the load-displacement curve
describing the overall deformation mechanism (e.g. the moment-ovalisation for a
longitudinal crack in an elbow subjected to bending ). Obviously, the specific
plastic strain pattern is established when the non-linear part of this displacement
overcomes the linear one. The transition corresponds to the load at which these two
parts of the displacement are equal and defines the reference load.

For shallow cracks for which the plastic pattern may vary quite widely with
the amount of strain hardening, a pseudo reference load may be found only in a
restricted range of strain hardening values.

KJ FORMULAE IN FOUR NON-LINEAR 3D STRUCTURES

In all the considered cases, the same procedure has been applied:K, = JI¢/T s
computed numerically (R6 option 3) and through equation (14) (R6 option 2) using
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analytical or computed estimates of the reference load. Both values are plotted as a
function of L. The variations of the plasticity correction along the crack front are
illustrated by plots of J/Jpecpest point VETSUS angular position ( Shape Curves ). The
main geometrical parameters arc: the internal and mean radius Rj and Ry, of the
section, r the elbow curvature radius and t the thickness.

All the cracks have a semi-elliptical shape defined by the depth over the length ratio
a/c. Their size is characterised by the depth over the thickness ratio a/t. The mesh
clements are isoparametric and quadratic. The plasticity model is the Von Mises
isotropic criterion. All the computations are conducted under the large displacement
hypothesis. The first case is analysed with FRAMATOME's SYSTUS Finite-
Element code, the other with CASTEM?2000 developed by CEA.

Pressurised pipe with a longitudinal external crack

The crack is long (a/c = .190) and deep (&/t = 712). The model simulates a
burst test, and a good correlation with the experiment has been obtained (15), owing
to the high degree of mesh refinement. The local bulging of the cracked area
represents the deformation mechanism. The reference load expression is derived
from Battelle's empirical formula (16) but needs further validation for a range of M
values.
pRi/t Ao~ A/M

o, A,—A

where A = 2(c+t)t and A= mac represents the cracked area

L, = (15)

M is the bulging factor given by Krenk's formula
M=.614+.481A, +.386 ¢ (16)

with A, =[12(1—v2)]'25 o/ JR
The agreement between option 3 and 2 curves is good but the computation has been

conducted only up to the initiation load (Fig. 1). The shape curves are almost
identical except in the very close vicinity to the free surface (Fig. 2).

Pipe with a circumferential external crack under pure bending

The crack is rather short (a/c=.5) and shallow (a/t = .25). The mesh is
refined around the crack and contains more than 6200 nodes. Here the development
of the plastic pattern is controlled by the rotation of the cracked pipe section around
the neutral axis. The reference load is given by the global limit load of the cracked
section (Wilkowski's formula) :

Qt =4 R*t [cos (y %] -.5 % siny) with  y= 1::

The agreement between option 3 and 2 curves is excellent up to Ly = 1.5 (Fig. 3).
The shape curves are close to each other except at the vicinity of the free
surface(Fig. 4).
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Elbow with a circumferential external crack under pure bending

The crack is the same as is the second case and the mesh is identical. The
mechanism controlling the plastic deformation is the same as in the pipe. The
reference load is given by the global limit load of the cracked section deduced from
Calladine's formula (17) :

Q" = 88X QI with A= ;—tz (18)

ref ref

The agreement between option 3 and 2 curves is excellent up to L; = 1.4 (Fig. 5).
The shape curves are close to each other except at the vicinity of the free surface
(Fig. 6).

Elbow with a longitudinal external crack under bending
This case corresponds to an experiment conducted on an elbow subjected to

a variable closing moment and a compressive load. The ovalisation induced by the
formation of axial hinges on the crown is the controlling mechanism of plastic
deformation. Due to the elbow curvature, this mechanism is strongly connected to
the rotation of the circumferential sections. The large displacement computations
yield very good results compared to the measurements (18). The reference load is
given by Griffith's formula (19) and corresponds to the excessive load measurement
on the moment-ovalisation curve (Fig. 8). For the considered crack depth, the
formula is identical to (18). The estimation scheme gives a conservative value of J
up to Ly = 1.1. The proposed Ly formula is not very accurate since the influence of
the tranverse and axial loads on the yielding is not considered. Again, the shape
curves are very close to each other except near the free surface where the stress
triaxiality differs greatly from the plane strain state which dominates along more
than eighty percent of the crack front.

This closeness of the shape curves, shows that, under proportional loading,
the amplification factor to the elastically computed J due to yielding does not
depend on the local stress level but on a the global load. This justifies the reference

load model.
CONCLUSION

The R6 option 2 procedure may be used to predict J from the elastically computed
value J¢ along the whole crack front. In 3D cases, the bases of this approach are
clarified and four examples show the accuracy of such a method.
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