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THE EFFECT OF DUCTILE CRACK EXTENSION ON CLEAVAGE
FRACTURE PROBABILITY.

A Martin-Meizoso*, L Ocaﬁa-ArizcorretaT, J. Gil-SevillanoT, M. Fuentes-Pérez”

In the ductile-to-brittle transition zone of steels, ductile crack
extension occurs prior to unstable cleavage cracking. This paper
studies the effect of such stable crack propagation on the brittle
toughness probability value by means of a statistical fracture model
based on microstructural parameters. The model predicts a
substantial increase of the fracture probability for a given load
condition (fixed by the J or K level) when some propagation occurs
relative to the static, non propagating crack case. The model
assumes brittle fracture to occur when a ferrite grain size
microcrack -conditioned to the propagation of a slip-induced
carbide size microcrack- is able to propagate into the neighbouring
grains. The results show reasonable agreement with the fracture
statistics of a SA 533B c.1 bainitic steel.

INTRODUCTION

Steel fractures at the brittle-ductile transition zone initially take place by void
coalescence (ductile mode) and then change to cleavage (brittle and catastrophic
fracture mode). Ductile crack extension increases with temperature. At high enough
temperatures, the ductile crack propagation extends throughout the fracture
surfaces without brittle zones. It is also observed that ductile extension scatter
increases with temperature.

Figure 1.c sketches the plastic zone development during the load process.
Until reaching the material critical stress intensity factor, there is no tearing of the
blunting crack tip, and the plastic zone grows pinned to the crack tip. Above this
critical value, K, ductile crack extension takes place and, so, the plastic zone
samples virgin volumes of material. Intentionally, in Fig. 1.c, the plastic zone size
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has been sketched increasing its size in a parabolic way. Assuming a constant
tearing modulus, T (in terms of K: T = dK/da), for the material, the applied stress
intensity factor increases linearly with crack extension, Aa, and then the plastic zone
size will increase in a parabolic way.

THEORETICAL MODELLING

Figure 1.a shows how the problem is faced in the context of the computer
programme developed at CEIT for brittle toughness predictions. The programme
develops a probabilistic model based on the weakest link concept and a detailed
account of it has already been published (1-4). Computations are accurate provided
that crack tip ductile tearing does not take place. After crack tip tearing, ductile
crack extension takes place, as depicted in Fig. 1, and, so the advancing plastic zone
samples new volumes of material. Computations according to Fig. 1.a should then
be regarded as a lower bound for actual brittle fracture probability. The target of
this contribution is to estimate the effect of these additionally scanned volumes on
the cleavage fracture probability when stable crack propagation occurs prior to
cleavage (i.e., in the ductile-to-brittle transition zone).

Although it was already obvious in the formulation proposed by Pineau-
Beremin (5-7), Wallin (8) showed explicitely that any toughness modelling of a
statistically homogeneous material based on

i) the weakest-link hypothesis and,

ii) which assumes stress and strain fields geometrically similar around the
crack tip scaling with the J integral (or K;?) for distances,

predicts two parameter Weibull functions for toughness distribution, with modulus
m = 2 (distributions of J. or CTOD) or m = 4 (for distributions on K¢):

F(Kc) = 1 - exp(-B-K;c*¥) 4))

where F stands for the toughness distribution function (in terms of Ky in this case),
B is the crack front length and ¥ is a material parameter dependent on temperature,
strain rate and tested geometry. A rigorous explanation, with a detailed description
of the hypothesis and a discussion about the results of these models resulting on
equation (1) has been done by Slatcher (9).

Figure 1.d represents an upper bound for the cleavage fracture probability.
This -larger than real- volume may be decomposed in Fig. 1.a (lower bound, already
computed) and an additional volume obtained by scanning the plastic zone over a
length Aa.
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To compute the cleavage fracture probability in the actual case after crack
tip tearing, Fig. 1.c, an upper and lower limit were devised according to Figs. 1.b
and 1.d. Figures 1.b and 1.d may be decomposed in "static" plastic zones and
"scanned" areas. Figure 2 shows how Figs. 1.d and 1.b are decomposed to compute
the cleavage failure probability. The zone labeled A is the final plastic zone
extension, its cleavage failure probability was computed by the previous (static)
version of the programme. The scanned area, B, is discretized in horizontal strips
that will be considered of uniform effective (for cleavage fracture) stress. As a first
approximation, the maximum principal stress, G, at a given strip height, y, will be
used as the cleavage fracture effective stress. Figure 3 is a normalized
representation of the locus of 1 MPa maximum principal stress according to the
HRR elasto-plastic stress field solution (10-13) for a material with a non-linear
elastic behaviour of Hollomon-type,

€= 50(1) 2
Oy

where o stands for the von Mises equivalent stress, € is the work-equivalent plastic
strain, o, and &, are, respectively, the 0.2% yield stress and strain (= 0.002), and n
is the hardening exponent. The hardening exponent used in Figs. 3 and 4, n =53,
was obtained by fitting to the experimental behaviour of the material in the
temperature range from -40 to -70°C (3).

Clearly, from Fig. 3, the maximum principal stress at a given height is found
at about an angle of 45° with respect to the crack propagation plane (it slightly
depends on the strain hardening exponent, n). According to the accepted evidence
and the proposed cleavage modelling (1-4), cleavage fracture nucleation in steels is
slip-induced, so, dislocations are required to move in order to trigger fracture.
Thus, nucleation will only take place within the plastic zone. Figure 4 plots the
normalized plastic zone boundary (computed from the HRR elasto-plastic stress
field solution (10-13)). Whenever the maximum principal stress, for a given height,
lies within the elastic zone (outside the plastic zone), the principal stress at the
elasto-plastic boundary is used there to compute the cleavage failure probability
instead of the maximum principal stress for this height.

RESULTS

Experimentally measured microstructural and mechanical parameters of a bainitic
steel, S A533B C.1, from a previous study (3) have been used in the calculations.
Material strain hardening exponents are: n = 5.29 and n = 5.30 at -40 and -70°C,
respectively. Two large sets of K¢ data for brittle fracture propagation computed
from J integral values measured with CT specimens 25 mm thick at -40°C and -70°

979



ECF 10 - STRUCTURAL INTEGRITY : EXPERIMENTS, MODELS AND APPLICATIONS

C, mainly after some stable crack propagation were also available. Figure 5
summarizes the experimental cleavage fracture data in the form of a Weibull plot.
Figures 6.a and b show the cleavage results vs. the prior stable propagation, i.e., the
resistance curve (R curve: K; versus Aa) at both temperatures being studied.
Maximum ductile crack propagations up to 200 and 1000 pum at -70°C and -40°C,
respectively, were recorded. Solid circles in Figs. 6.2 and b are the toughness values
for which the probabilities of cleavage have been calculated with the model.

The microstructural parameters (carbide and grain size distributions),
mechanical properties (Young's modulus, material strain hardening exponent versus
temperature) and local -micromechanism related- fracture parameters (arresting
ability of the different interfaces between carbide/ferrite and ferrite/ferrite and
carbide failure probability parameters) used in the calculations are those reported
previously for cleavage failure predictions from notches or non-propagating cracks

(1-4).

Figures 7.a and 7.b summarize the model predictions at -70°C and -40°C,
respectively, with and without ductile crack extension and according to Figs. 1.b
and d (lower and upper cleavage fracture probability bounds). For Fig. 1.b
computations, 20 steps were used to discretize the ductile crack propagation. Note
that both upper and lower boundaries coincide until crack tip tearing takes place.
The subsequent ductile crack extensions (in accordance with Figs. 6.a and b) are
labelled in Figs. 7.a and 7.b.

Figure 8 summarizes the lower bound computations at -70°C and -40°C.
The model predictions agree qualitatively with several experimental findings: an
upwards kink on the toughness probability is predicted at the onset of stable crack
propagation and the general effect of stable crack propagation is to increase the
Weibull modulus above the theoretical value of 4 in the transition region. The
quantitative disagreements on the scale parameter of the Weibull distributions are
ascribed to an increase of the arrest capabilities of the microstructural boundaries
and a decrease in nucleation probability from carbides as temperature increases.

CONCLUSIONS

1. Ductile crack extension plays a very significative role on cleavage fracture
probability.

2. Even when ductile crack extension, Aa, is small compared to the plastic zone
size, cleavage fracture probability increases due to the larger volume sampled at the

maximum stresses.

3. The largest effect is found soon after the beginning of the crack tip tearing. With
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larger crack extensions, again a Weibull modulus of 4 is asymptotically attained,
now with larger cleavage fracture probabilities.

4. The attempted model predicts reasonably well the experimentally observed
changes in slopes (on a Weibull plot) at the beginning of crack tip tearing.
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LIST OF SYMBOLS

a = Crack size (m)y

B = Crack front length (m)

CTOD = Crack tip opening displacement (m)
E = Young's modulus (MPa)

F = Cumulative toughness distribution function
J =T integral (kJ/m2)

Jo = Critical J integral (kJ/m2)

K, =Mode I stress intensity factor (MPaVm)
K¢ = Critical stress intensity factor (MPa\m)
m = Weibull modulus (shape parameter)

n = Strain hardening exponent

R = Ductile resistance curve (kJ/m2)

T = dK/dAa = Tearing modulus (MPa/Vm)

x = horizontal distance from the crack tip (m)
y = vertical distance to the crack plane (m)
Aa = Crack growth (m)

€ = work-equivalent plastic strain

€, = 0.2% yield strain

o = von Mises equivalent stress (MPa)

O, = 0.2% yield stress (MPa)

G, = maximum principal stress (MPa)

¥ = material constant dependent on temperature
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a) static approximation

d) upper bound

b) lower bound

Fig. 1. Schematic showing plastic zone development along the loading process. The
shaded areas represent: a) the static approximation, b) a lower bound, c) the actual
case, and d) an upper bound.
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Fig. 2. Scanned plastic zone decomposition used within the computations of the
upper and lower bound (according to Figs. 1.b and 1.d).
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Fig. 5. Experimental results for S A533B C.1 bainitic steel, at -70 and -40°C on a
(cumulative failure probabilities) Weibull plot.
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Fig. 6.a. Experimental data of resistance curve (R curve) obtained for S A533B C.1
at -70°C. Solid points stand for the simplified data used in the computations.
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Fig. 6.b. Experimental data of resistance curve (R curve) obtained for S A533B C.1
at -40°C. Solid points stand for the simplified data used in the computations.
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Fig. 7.a. Model predictions for -70°C. The amount of ductile crack extension is also
indicated.
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Fig. 7.b. Model predictions for -40°C. The amount of ductile crack extension is also

indicated.
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Fig. 8. Lower bound model predictions for -70°C and -40°C cleavage fracture
probabilities, on a cumulative Weibull plot.
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