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APPLICATION OF A MICROMECHANICAL MATERIAL MODEL TO CREEP
DAMAGE AND CREEP CRACK GROWTH IN X20 CRMOV 121

R. Mohrmann, M. Sester and T. Hollstein®

An ‘'integrated approach’ is proposed as a methodology for
predicting the deformation and the lifetime of components
operating under creep conditions. This approach is applied to
creep crack growth experiments in X20 CrMoV 12 1 at 550°C.
Specifically, the Robinson model is chosen for describing visco-
plastic deformation and is combined with a model proposed by
Rodin and Parks, which models the effect of constrained
intergranular cavitation.

INTRODUCTION

Micromechanical material models are a modern tool for modelling the mechanical
behaviour of steels and alloys for high-temperature applications. These models have
the advantage of having a physical background or being at least motivated by
physics. Three main aspects should be distinguished within micromechanical mate-
rial models, the description of high-temperature deformation, the description of the
damaging processes and the interactions of both.

The simple Norton law describes the deformation behaviour by a unique
stress/strain-rate relation with no influence of the prior history. In order to model
the response to more complex loading and temperature histories, more advanced
visco-plastic material models should be used, which are formulated in terms of in-
ternal variables representing, for example, kinematic or isotropic hardening phe-
nomena. Visco-plastic material models are appropriate to handle transient mechani-
cal and temperature loading for a calculation of the stress redistribution in pipe
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bends or for an analysis of the mechanical behaviour of turbine blades under thermal
and mechanical loads.

The description of the damaging processes is necessary for the estimation of the
lifetime of components. On one hand there are phenomenological models like that of
Kachanov, which is based on a formal damage parameter. On the other hand, a mi-
cromechanical approach models the physical phenomena such as the nucleation and
the growth of pores, the evolution of the carbide structure or the evolution of the
subgrain structure. These micromechanical properties may be measured metal-
lographically as well as described with such models.

Deformation and damage may have a strong influence on one another. For example
in the case of grain boundary cavitation the strain rate controls whether the cavity
growth is constrained or unconstrained. The interactions between deformation and
damage should be taken into account choosing an appropriate model. It is recom-
mended to combine both models, which can be done by using the variables for the
micromechanical properties as internal variables within the constitutive equations.
This is called an 'integrated approach'. The application of such an integrated ap-
proach to a component includes the following steps:

« Identification of a model and adjustment of the model parameters to experimen-
tal deformation data (creep, relaxation, cyclic loading, ...) and metallographic
information.

o Implementation of the material model in a finite element (FE) code.

e FE simulation of the component behaviour.

In the present paper the Robinson model (1), which is capable of describing the
high-temperature deformation, is combined with a model developed by Rodin and
Parks (2), which models the effect of constrained cavitation on the deformation.

MICROMECHANICAL MATERIAL MODEL

The Robinson model (1) is a visco-plastic material model based on the theory of
high-temperature plasticity. It describes isotropic and kinematic hardening but no
damaging processes. In an analysis of Rodin and Parks (2) the effect of constrained
intergranular cavitation on the stationary creep rate is evaluated. In this analysis an
'acceleration' factor for the stationary creep rate is defined, which models tertiary
creep. An empirical equation was chosen for the damage evolution.

Uniaxial formulation. The uniaxial formulation is used for adjusting the model to
uniaxial creep data. The equation for the non-elastic strain rate € has the form:

538



ECF 10 - STRUCTURAL INTEGRITY : EXPERIMENTS, MODELS AND APPLICATIONS

I IC L
f==g T_l f(p,n) sgn(c-) M

A and n are adjustable material parameters. The back-stress o, the isotropic harden-
ing variable K and the damage parameter p are internal variables, which develop
according to the following differential equations. Equation (1) is valid if
c(c-0a)>0 as well as (o —a)2 >3K; otherwise €=0. The function f(p,n)
models the acceleration of deformation due to constrained cavitation:
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The evolution laws for the internal variables are
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with W=c¢. H,x,B,R,m, K, K; and W, are adjustable parameters, which de-
pend on the temperature. Equation (3) is valid, if oo, > 0 as well as |o| > o), with
(1.3 =3x? G,, where G, is another parameter. Otherwise, in the first term of Eq.

3), ais substituted by o, The evolution equation for the damage parameter p is
taken to be

. P =1y 3 ,
p= EZ'Y— Y |8l(y 1y} £, (5)
4

with pf/sz and y being adjustable parameters. The value of p must not be negative.
Therefore, the model contains 12 parameters and two initial values for a and K (o;
and K;, where ao; is set to the value 0 MPa) to describe the nonelastic behaviour.
For p the definition according to Hutchinson (3) is used. He concluded, that the me-
chanically relevant damage parameter should be proportional to the number of
cavitating facets per volume, N, times their diameter, d, cubed. Specifically he sug-
gested the following form
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where n is the Norton stress exponent.

Three dimensional formulation. The extension of the model investigated to arbitrary
stress states is necessary to enable finite element calculations. The parameters have
the same notation and numerical values as in the uniaxial formulation. The tensor of
the nonelastic strain rate € has the form:

(n-1/2
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J, denotes the second invariant of the effective stress Z, where Z=s-a is the differ-
ence between the deviator of the stress tensor s, and the back-stress tensor a, which
is deviatoric by definition. The back-stress tensor a, the isotropic hardening variable
K and the damage parameter p are internal variables, which develop as given in the
following differential equations. The function f(p,n) and the evolution for K are
given in equations (5) and (4), respectively; o, and o, denote the maximum principal
and the v.Mises equivalent stress, respectively. Equation (7) is valid if sZ > 0 as well
as J,(Z) > K, otherwise € =0. The evolution laws for the internal variable o is
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Equation (8) is valid, if Za > 0 as well as G > G,, with G = Jy(a)/x2, where G, is

another parameter. Otherwise, in the first term of Eq. (8), G is substituted by G,.
The evolution equation for the damage parameter p is

(y-D/2 12
o7 '3 3] o,

with the parameters pf/efy and y. This formulation allows p to shrink under com-
pression, therefore there is no net damage for symmetric cyclic loading.

Finally, the coupling of the stress rates and the strain rates is given by the differen-
tially formulated Hooke's law
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where E and &9 are the tensor of elastic moduli and the total strain rate tensor,

respectively.

MODELLING OF CREEP DATA

Optimisation method. Constitutive equations with internal variables cannot generally
be integrated in closed form to give, for example, creep or relaxation curves. Hence,
a program system must be applied that allows the numerical integration of the con-
stitutive equations for arbitrary testing conditions (constant load, constant stress,
constant strain rate, relaxation, cyclic loading, etc.). The integration routine is a
subprogram of a program that varies the parameters of the constitutive equations in
such a way that the deviation from experimental data (for example, in terms of chi-
square) is minimal. The aim is to optimise the parameters in relation to a whole set
of experiments including creep tests at various stresses and other types of tests. For
the present paper, however, only creep tests were available to which the model
could be adjusted.

Adjustment of parameters. The model has been applied to the 12%-chromium steel
X20 CtMoV 12 1. The deformation was modelled based on the creep data of nine
creep tests performed at 5500C. These tests are constant load tests with a duration
of up to 30 000 h. Primary, secondary and tertiary creep behaviour could be ob-
served. The uniaxial formulation of the model, which is capable of describing iso-
tropic and kinematic hardening as well as constrained cavitation, was adjusted to the
primary, secondary and tertiary part of the creep curves, i.e. the 13 model parame-
ters were optimised simultaneously with respect to all nine creep curves. For this
optimisation a self-developed software package called Fitit' was used.

Results. The optimised parameter set is given in Table 1. The agreement between
the model investigated, denoted with "Robinson model with damage', and the creep
curves is satisfactory: In Figure 1 the creep data and the modelling result are plotted

TABLE 1. Optimised Parameter Set.

A n H K B R

3551015 |9.00 |3.1110%° 1/N3 fixed |[.853 8.49 10-8

1.02 859. |549. 124 66.4 |141 173.

units in MPa, sec
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with a log strain rate scale over a log strain scale. The strain rate values are calcu-
lated according to a two point differential quotient. This formula produces large
scatter for low strain rates. Therefore experimental data points with strain rates
below 104 %/h are omitted from Fig. 1. Figure 2 shows the strain versus normalised
time for three creep tests. The stress dependence of the strain ratio (i.e. fracture
strain divided by Monkman-Grant product) for different stress levels can be calcu-
lated from the experimental data and is described by the model investigated.

PREDICTION OF INDEPENDENT EXPERIMENTS

Creep crack growth experiments with side grooved compact tension (CT) speci-
mens (geometry B/W = 20/50) made of X20 CrMoV 12 1 were performed at differ-
ent load levels at 5500C (4). In these experiments, the load line displacement was
measured on-line and, in addition, the crack extension was determined after the
specimen had been fractured at RT.

Finite Element Implementation. In order to predict these experiments with the help
of the combined Robinson and Rodin and Parks model, the three dimensional form
of the constitutive equations (7)-(10) was implemented by writing a user material
subroutine UMAT for the FE code ABAQUS. ABAQUS provides kinematical
quantities (total strain increments or deformation gradients) and the user has to per-
form the integration of the constitutive equations on the element level yielding the
updated stress in the global balance of momentum equations. The system of differ-
ential equations (7)-(10) can behave mathematically very 'stiff in the sense that
roundoff errors grow exponentially, thus requiring special care in choosing suitable
integration schemes. In our implementation, the numerical integration is done by a
stepsize-controlled fourth order Runge-Kutta scheme. An accurate and stable inte-
gration is accomplished by subincrementing the global time step in such a way that
an estimate of the local truncation error of a single Runge-Kutta step is within pre-
scribed bounds. At the time of submitting the manuscript, the implementation of the
complete set of equations (7)-(10) was not yet finished. In this paper, results of
simulations are presented in which the effect of damage on the deformation behav-
iour is neglected (p = 0 in eqn. (7)) and eqn. (9) is evaluated by post processing the
FE results.

Results and Discussion. Four experiments were simulated with finite elements, em-
ploying the Robinson model without damage. One representative quarter of a CT
specimen was modelled with 450 three dimensional 20 noded solid elements. The
mesh is shown in Figure 3 where the ligament is shaded and the loading point is
marked by an arrow. The CPU times ranged from 3 hours up to 10 hours on an
engineering workstation. Figure 4 shows a comparison of the measured and calcu-
lated load line displacements in the four experiments. The agreement is good. This
holds especially for the experiments undergoing only little creep crack growth
(F=6200 N and F=9800 N). Since damage evolution and crack growth were not
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modelled, the poorer agreement for the higher loads, where more crack growth
occurred, is not surprising.

Of course, the FE mesh is too coarse to give an accurate description of the crack tip
fields. Note that the side lengths of the crack tip elements are just in the range of the
depth of the side groove. Nevertheless, for a qualitative assessment, the distribution
of the field variables in the vicinity of the crack tip is given. The relaxation of the v.
Mises stress due to creep is shown in Figs. 5 to 7. Figure 8 gives the ratio of the
maximum principal stress to the v. Mises stress, which has a substantial impact on
the creep rate in the Rodin and Parks model. Figures 9 and 10 show the distribution
of the damage parameter at t = 10 h and t = 1000 h obtained by post processing the
FE results. At t = 1000 h a heavily damaged zone with p > 2.5 spreads about 0.7
mm into the ligament. Clearly, in a fully coupled deformation and damage analysis
with the complete set of equations (7)-(10), this amount of damage would have a
strong effect on the crack tip stress and strain fields and thus on the rate of damage
evolution itself. In the corresponding experiment, the measured creep crack growth
was about two times larger than the extension of the heavily damaged zone
predicted by the uncoupled analysis.

CONCLUSION

The numerical tools for the application of micromechanical material models are de-
veloped. The application to CT-specimens shows a reasonable agreement between
the prediction and the experiment. The numerical effort of the calculations does not
exceed the capacity of a workstation. Therefore this method may be used for more
extended applications like real components.

We acknowledge many fruitful discussions with Dr. H. Riedel.
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Figure 1: Creep data for X20 CrMoV 12 1 at 550°C and modelling results.
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Figure 2: Creep curves for X20 CrMoV 12 1 at three stress levels.
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Figure 3: Original and displaced
mesh of a CT specimen.
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Figure 5: V. Mises stress distribution
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Figure 4: Load line displacement: measure-
ments (symbols) and simulations.
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Figure 6: V. Mises stress distribution
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Figure 7: V. Mises stress distribution ~ Figure 8: Ratio of maximum principal stress
at t = 1000 h. to v. Mises stress at t = 1000 h.
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Figure 9: Distribution of the damage Figure 10: Distribution of the damage
parameter at t = 10 h. parameter at t = 1000 h.
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