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FEM AND BEM ANALYSES OF NOTCH STRESS INTENSITY FACTORS IN
ANISOTROPIC MATERIALS

M. Heinzelmann, M. Kuna and M. Busch *

The asymptotic stress field at sharp notches in orthotropic materials
can be described as the sum of one or two singularity terms, where
the first term corresponds to symmetric and the second term to
antisymmetric loading of the notch. Following Stroh’s formalism,
the stress exponents and angular functions have been calculated
analytically for a notch in monocrystalline silicon between two
(111) lattice planes. To calculate the notch stress intensity factors
(NSIFs), which are a measure for the magnitude of the stress terms,
the Finite Element Method (FEM) and the Boundary Element
Method (BEM) have been employed. Using FEM, the NSIFs were
extracted from the nodal stresses ahead of the notch tip. Using
BEM, the NSIFs can be obtained directly by incorporating singular
notch tip elements into the BEM code. Very good agreement was
achieved for the NSIFs calculated by the two numerical techniques.

INTRODUCTION

For modern micromechanical components as sensors, actors, micromachines etc., the
problems of mechanical reliability, strength and material behaviour play an increasing role
(Heuberger (1) and Petersen (2)). Micromechanical components are produced from
monocrystalline  silicon wafers employing the well known technologies from
microelectronics, involving anisotropic etching techniques (1), (2). As a consequence of
these etching processes, nearly atomically sharp notches occur in the structures, which are
frequently the origin of failure of the structures by brittle fracture. The reason is the stress
concentration at the notches under mechanical or thermal loading. Therefore, an
assessment of the reliability of a notched structure requires the knowledge of the notch tip
stress field.

THE NOTCH TIP STRESS FIELD

THE NOTCH TP o5 11hboy 222

The notch tip stress field in arbitrarily anisotropic materials can be described by a power
series expansion where the stress exponents and angular functions can be calculated
analytically with the Stroh formalism (3.4), as will be outlined in the following.
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Within linear elasticity, the displacement-strain relation, the equilibrium equation,
and the stress-strain relation of any material are expressed by

1
€45 :E(uk,x +us,k) (1),
Ojj = Cijks€ks @),
and c;,;=0 3),

where u, is the displacement vector, G;; and g, are the stress and strain tensor and c,, is
the elasticity tensor, respectively. Assuming the displacement field u, is independent of the
cartesian coordinate x5, u, can be written as

u =a, f(Z) : 4
with
Z = r(cos@+ psing) (5)

in polar coordinates, where the complex number p is an eigenvalue and a, the
corresponding eigenvector found from the elasticity constants. Substituting eq.s (1) - (3)
into eq. (4), we obtain

(Cilkl +p(ciie +Ci2kl)+P2Ci2k2)ak =0 (6),

which results in a nontrivial solution for a, only if the determinant of the matrix vanishes.
For orthotropic materials, the vanishing of the determinant means

2
am+pamns  Plenn+a) 0
2
pleria+ei2) o+ Pl 0 =0 .
2
0 0 313+ P33

Hence, eq. (6) leads to a quadratic and a quartic equation in p. As was shown by Ting and
Chou (5), the two solutions of the quadratic equation correspond to anti-plane
deformation, whereas the four solutions of the quartic equation correspond to in-plane
deformation. It can be shown (3) that for a positive strain energy, the solutions for p
cannot be real. Thus, the six solutions p,, are three pairs of complex conjugate numbers.
Having calculated p,,, from eq. (7) and a,, from eq. (6), the stresses pertaining to each
eigenvalue are obtained with eq.s (1), (2) and (4), and can be superimposed linearly to
give
4

d
O = Zx(m)(cuu + P(m)c,ykz)ak(m)——“dz f(Z(u))) (®)
=1 ()

for stress terms pertaining to in-plane deformation. To determine the exponents A of the
series expansion of the notch tip stress field, let f(Z) be chosen as

Zl-l.
£(2)= Y ).

Substituting eq. (9) into eq. (8) and applying the boundary conditions of stress-free notch
faces leads to the eigenvalue equation
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D% =0 (10),

where the eigenvector X, corresponds to the coefficients in eq. (8) and the 4x4 matrix Dy,
is given with eq.s (5), (8) and (9) as

) 1-A
Dyy = (Cqul + P(m)cu2k2)ak(m)(cos @1t Py SIN ‘Pl) (11a)

1-A
and Dyy= (c(u_2)2kl + p(m)c(u_zpu)ak(m)(cos @ + P()SIN (pz) (11b)

for p=1,2 (eq. 11a) and u=2,3 (eq. 11b), respectively. In eq. (11), @, and @, are the
polar angles of the notch faces. With eq. (10), A is obtained as the eigenvalue for which
the determinant of D, vanishes.

Eq. (8) can be rewritten in a more convenient form as

-\
Oy (re @) = Ay S (@) (12),

where the eigenvalue A, is the stress exponent and fi)-(")((p) are angular functions. Stress
terms with A, >0 are singular. The angular functions fij(n)((p) can be calculated
analytically from the eigenvector X, with eq.s (5), (6) and (9) by normalizing the
components of the eigenvector such that fw(cp:0)=1 for stress terms pertaining to
symmetric loading of the notch and fw((p=0)=1 for stress terms pertaining to anti-
symmetric loading of the notch, where @=0 is the polar angle of the ligament ahead of the
notch tip. The notch stress intensity factor (NSIF) A, which then uniquely determines
the stress term, depends on the geometry and loading of the whole structure and has to be
calculated numerically. Note that the dimension of A, MPa~m)‘. depends on the

magnitude of the stress exponent A

DETERMINATION OF THE STRESS FIELD PARAMETERS FOR MONO-
CRYSTALLINE SILICON STRUCTURES

With the equations of the previous chapter, the stress exponents A and the angular
functions f;;(@) can be determined analytically for anisotropic materials. For
monocrystalline silicon in the (X}, X, X5) coordinate system of the notched plate
investigated in the following chapter, the elasticity tensor Cyy consists of the nonzero
components €, l=l,6564-10l Ipa, c2222=c3333=1,943-]0' IPa, ¢} 9,=C 133=0,6394~10' Ipa,
C9937=0,3528-10!Pa, Cy323=0,5085-10''Pa and C1313=C121,=0.7951-10"'Pa. For a notch
between two (111) lattice planes with an opening angle of 70,52°, this leads to the two
singular stress exponents

A, =0,4814 and A, =0,2392 (13),

where A, pertains to symmetric (mode 1) loading, and A, to anti-symmetric (mode 2)
loading of the notch. Hence, the notch tip stress field can be described by

Gij(",(P) =4 ,j,'|(‘P)’_M +Aszj2((9)’—)‘2 (14).

The angular functions fwl((p), fﬂp,((p), qupz((P) and fﬂpz((p) are plotted in fig.s 1 and 2.
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To calculate the NSIFs Ay numerical methods, €.8. the Finite Element Method
(FEM) or the Boundary Element Method (BEM), have to be used. Since singular finite
elements for V-notches exist so far only for isotropic materials (Lin and Pin Tong (6)), the
FEM determination of the NSIFs in anisotropic materials is based on the nodal stresses
around the notch tip. This requires a particularly fine mesh around the notch tip, see fig. 3,
showing the FEM mesh of a notched plate. To determine both A, and A, from the nodal
stresses, it is necessary to distinguish between the contribution of the first and second
stress term to the nodal stresses. The angular functions fw(q)) and f"p((p) (see fig.s | and
2) show that along ¢=0, Oy vanishes for the first stress term. and G vanishes for the
second stress term. It is therefore convenient to determine A, from Gy, and A, from G,
along ¢=0. Fig. 5 shows a log(csw) and log(0,,) V8- log(r) plot along ¢=0. Linear
dependences of log(cw) and log(ow) on log(r) are obtained in the vicinity of the notch tip.
The slopes of the lines ar¢ A, and Ay, respectively, and A, and A, can be determined from
the location of the corresponding line with eq. (14).

The Boundary Element Method provides a somewhat more elegant way to
calculate the NSTFs. Besides the general advantage that only the boundary of the notched
structure has to be modelled, the stress singularities can easily be modelled with special
notch tip elements that incorporate shape functions with the appropriate M stress
singularities. This technique has already successfully been applied to handle crack tip
singularities (Busch (7))- Therefore, a BEM mesh of a notched structure may be
significantly coarser around the notch tip, see fig. 4.

NUMERICAL RESULTS

For the notched plate shown in fig.s 3 and 4 (plate height: 10mm, plate width: 5mm, notch
depth: 2.5mm, notch opening angle: 70,52°), the NSIFs have been calculated by FEM and
BEM for three different load cases. In all load cases, the bottom side of the plate was
rigidly fixed and the plates were loaded by prescribing a common displacement o the
nodes at the top side of the plate. The prescribed displacements in horizontal (u) and
vertical (V) direction were u=0 and v=10-3mm in load case 1, u=103mm and v=0 in load
case 2, and u=v=10mm in load case 3. Thus, load case 1 corresponds to pure symmetric
loading, load case 2 to pure anti-symmetric loading, and load case 3 to combined
symmetric and anti-symmetric loading. The NSIFEs calculated by FEM and BEM agree
excellently, see table 1.

TABLE 1 - NSIFs calculated by FEM and BEM for the three different load cases.
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SUMMARY AND CONCLUSIONS

For the example of notches between two (111) lattice planes in monocrystalline silicon, the
stress exponents and angular functions of the singular stress fields were calculated
analytically. The stress intensity factors A, and A, were calculated numerically using
FEM and BEM. For the BEM determination, a special notch tip element was employed.
Very good agreement could be achieved between the results of the two numerical
techniques.
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Figure 1: fwl((p) )(solid line) and fw,(q)) Figure 2: qupz((P) (solid line) and f“pz((p)
(dashed line). (dashed line).
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Nodal stresses O and o, along along the ligament ahead of the notch tip.
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