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NEW MODEL FOR DETERMINATION OF RUPTURE TIME OF MATERI-
ALS WITH DIFFERENT BEHAVIOUR IN TENSION AND COMPRESSION

H. Altenbach* and A. Zolochevsky!

This paper deals with a new energy-based variant of a theory to
estimate the time of fracture under creep and damage conditions.
The theory is based on the hypothesis of coupled creep and frac-
ture processes for anisotropic materials with different behaviour in
tension and compression (e.g. some light alloys, composites, mono-
crystals etc.). The damage process is characterized by the specific
dissipation energy. The nonclassical creep behaviour including se-
cond order effects is described by constitutive equations derived
from a creep potential. In the case of anisotropic materials the po-
tential depends on the linear, the quadratic and the cubic invariants
of the stress tensor and some anisotropy tensors. In the case of iso-
tropic materials the potential depends only on the three invariants.
Finally, for a titanium alloy a comparison of theoretical predicted
and experimental results is given for a multiaxial stress state.

INTRODUCTION

Most of traditional creep behaviour isotropic models postulate the existence of a
creep potential including only the second stress deviator invariant. On the other
side some light alloys, composites, monocrystals etc. show a creep behaviour in
tests different from traditional one: for example different behaviour in tension
and compression [Pintschovius et al. (1)], nonunique normalized tension and
torsion curves [Kowalewski (2)], influence of hydrostatic pressure [Nishitani,
(3)]. In this case the potential formulation should be extended. The simplest
extension is connected with a potential formulation using in addition the first
or the third stress deviatoror invariant. In general, the potential depends on an
equivalent stress as a function of all three stress tensor invariants. In the case
of anisotropic materials the potential depends on stress tensor invariants and
some anisotropy tensors.
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Creep processes (especially the tertionary creep) are coupled with increa-
sing damage evolution. For modelling coupled creep and damage it is necessery
to introduce a damage variable. There are many possibilities of definition of
damage variables. One of them is connected with the dissipation power during
the deformation process. Thus the coupled creep and damage can be described
by creep constitutive equation and damage evolution equation.

THE MODEL

If a creep potential
F =¢? (oe > 0 — equivalent stress) (1)

exists, the small strain rate tensor & can be calculated by an associated creep
law

. oF

o is the stress tensor, A is a scalar factor. The equivalent stress suggesting the
equivalent behaviour in the uniaxial and multiaxial states can be defined in
the following way. Considering mixed invariants of the stress tensor and some
material constant tensors characterizing the anisotropy

on=b-.o0l=0--Wa. o0y =0-(0- )¢ o), (3)
the equivalent stress depends in general on all three stress tensor invariants

Te = 09 + aoy + Y02 (4)
There are b, a,(®) ¢ second, fourth and sixth order anisotropy tensors, a,«
are numerical coefficients characterizing the ”specific weight” of the linear and
the cubic invariants. For « = v = 0 we get the traditional anisotropic creep

models (von Mises-Hill-type theory). The eq. (4) is a possible generalization
of the equivalent stress formula proposed by Leckie and Hayhurst (4).

The constitutive equations (2) with respect to eq. (1) and (4) can be
expressed in the following way
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g.. B¢
é=2Aoe( = "+ab+75——f—":> (5)

0 0y

Multiplying eq. (5) with & finally we get the dissipation power
W =o0-&=2\! (6)

The intensity of the creep process can be characterized by the specific dis-
sipation power W (6), in this case a measure of damage is the energy dissipated
during the creep deformation

@:/Wdt (7)

For a given temperature and coupled creep and damage we can introduce the
following constitutive assumption

W = f(oe,¢) (8)
For example non-hardening material can be described by

d(oe)pa

W= lo—vr

9)

¢, is the value of the specific dissipation energy in the time of rupture, ¢ - a
material parameter. The general non-linear tensorial constitutive equation for
coupled creep and damage can be expressed

. x(oe)pl @Wa..o o-O¢. .o
- X0 | = —tab 10
€ ((p,, — Lp)q ( = + ab + v o_g ( )

The system of material dependend equations is complete, if a damage evolution
equation is defined

dep _ V(oe)pl
At~ (pn —#)" (D

The function x(o.) = 9¥(0e)/0e in eq. (10) should be determined by tests. The
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simplest assumptions are the power law o7, the hyperbolic sinus sinh(o./d) or
the exponential function exp(c./p) (n,d, p are constants). It can be shown, that
eq. (10) is similar to the equation suggestet by Rabotnov (5).

ISOTROPIC CREEP

Starting from the general constitutive and evolution eq. (10), (11), special
cases of material symmetry can be derived: orthotropic, transverse- isotropic
and isotropic relations. For isotropic coupled creep and damage we get

K
2
. q I, I C D111+EUU+—(IQI+2110’)
€= x(@ )tp..q ALl +Co + aBI+ v 3 3 (12)
(s — ) Jo0 03

with 0y = BL, o2 = AI? + CLz, 0} = DI} + KLI; + El;, L = o -1,
L=0 -0, I3=0 (0 0') The 6 material-dependend parameters can be
determined by some basic tests. Such test are

e uniaxial tension (oq1 # 0)

.~ _Qom— .
QG = o (13)

én = Koy

(pq
Ps — ‘P)q’
e uniaxial compression (—o11 # 0)

én = —K_|onl|" - (14)

)q’

e pure torsion (012 # 0)

. ol
2€2=N0'n———‘—611—M0' (15)
n = Ny Eoer
e hydrostatic pressure (011 = 022 = 033 = —po/3)
€1 =E'22=é;33= —PlUllln—fL'_q. (16)
(s — )
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Here the constants K+,K_,Q,N,M,P,n are known from tests. Suggesting
Norton’s creep law as function x(o.) = o¢ we can estimate all parameters in
the constitutive equations:

C = N¥/2,aB= M/(v20)", A= X*=C,
6v3D = [VIA+ 3C — 3aB — (3P) P - 3(T — aB)’
+ 18(A/VA+C+ aB + Q7" )(T - aB)? (17)
2K = 3(I—aB)’— [VOA+3C —3aB — 3P)P
_ 9a(A/VAFC +aBQK)(T — aB)?,
+L = (T—aB)s—'y3D—'y3K

with T = (K% — K7)/2,X = (KL + Kr)/2,r =1/(n+ 1).

From the general equations we can derive equations with less parameters.
For example there are different types of 3—parameter-equa,tions. If we get from
the test

T — MN™™ ,VoX2 —3N* =3T + 3P), (18)

then we have from (17) 7 = 0 and

q
- x(ae)v.q <A111+ L BI) (19)
(pe— ) o

On the other side, if
373 — [VOX? —3N* — @PyP=Y=M=0 (20)

with Y = X = N¥7/(2X) + QK;™, then we get (17) aB = D=K=0and

x(oe)¥h (AIll +Co Eo - 0’)
oo X\ (T —— 4 21
(¢x — )’ 0o 72 @
If we find

[V9X? —3N? — @PYP-9T° =T+ 3y =M =0, (22)
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we get aB =D = E =0 and

é:

x(0)¢? (AIII +Co  K(hl+ 2110)) (23)

(s —9)* 0 303

EXAMPLE

For the titanium alloy OT-4 and the temperature 748 K some creep test data are
published by Gorev et. al. (6). Using only three independent tests (tension,
compression and torsion) we get the following material’s parameters for this
isotropic material: n = 4,q = 2,¢. = 100 M Pa, Ky = 13.3 10~'* MPa"h7!,
K_ = 7510 MPa—"h~',N = 27.7 107" M Pa"h~'. The function x(o)

was taken in the form of Norton’s creep law x(o.) = o7.

On Fig. 1 and 2 the comparison between theoretical predicted (lines) and
measured (points) data for thinwalled speciments loaded by a torque and an
axial load are shown. The curve 1 is calculated by the equation (19), the curves
2 and 3 - by the equations (21) und (23). Here

¢ = o11én + 2012612
We can obtain a good agreement between the theoretical and experimental

results.
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Figure 1: Specific dissipated energy Figure 2: Specific dissipated energy
versus time in the case of superpo- versus time in the case of superpo-
ses tension (01; = 194.9 M Pa) and ses tension (oy; = 156.3 M Pa) and
torsion (012 = 46.6 M Pa) torsion (012 = 52.1 M Pa)
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CONCLUSIONS

In the paper a theory for determination of the fracture time under creep
conditions for materials with different behaviour in tension and torsion based
on energy assumptions is proposed. For isotropic materials we get a good agree-
ment between the theoretical (calculated) and experimental (measured) data in
the case of multiaxial stress state.
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SYMBOLS USED

o stress tensor
Iy, 12,13 invariants of the stress tensor
A,B,C,D, K, E constants in (12)
K+,K_,Q,N,M,P constants in (13) - (16)
€ rate tensor of small creep strains
ae, x(0¢) equivalent stress, function of o.
F creep potential

scalar factor
b,® a®c second, fourth, sixth order anisotropy tensors
a, numerical coefficients
01,08,0% mixed invarients
W, e, ¢" dissipation power, dissipated energy, limit of ¢
q,n,p constants
Po hydrostatic pressure

REFERENCES

1. Pintschovius, L., Gering, E., Munz, D., Fett, T, Soubeyroux, J.L., J.
Mater. Sci. Lett., Vol. 8, 1989, pp. 811 - 813
Kowalewski, Z., Arch. Mech. Vol. 39, 1987, pp- 445 - 459

Nishitani, T., Trans. ASME J. Pressure Vessel Technol. Vol. 100, 1978,

pp. 271 - 276
4. Leckie, F.A., Hayhurst, D.R., Acta Metallurgica, Vol. 25, 1977, pp- 1059
- 1070

5. Rabotnov, Yu.N., 7 Creep Problems in Structural Members”, North-
Holland, Amsterdam, 1969

6. Topes, B.B., Py6anoB, B.B., CocHuH, 0.B., IMT®, Ne 4, 1979,
cc. 121 - 128

277





