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INFLUENCE OF THE MULTIAXIALITY OF STRESS STATE ON THE
DUCTILE FRACTURE BEHAVIOUR OF DEGRADED PIPING COMPONENTS

U. Eisele*, K.-H. Herter* and X. Schuler*

Experimental investigations and numerical calculations by means
of the finite element method conceming linear-elastic as well as
elastic-plastic material behaviour were performed to develop a
methodology for the fracture mechanics evaluation taking into
account the multiaxiality of stress state.

A description of this fracture mechanics evaluation methodology
and it’s application on degraded piping components (T-branches
and elbows with dimensions like the primary coolant lines of
PWR-plants) is provided.

INTRODUCTION

Most of the common evaluation procedures, Fig. 1, are based on one-parametric
fracture mechanics concepts. The range of applicability of the fracture mechanics
methods is restricted, e.g. by limits of transferability of fracture mechanics material
laws. If ductile crack extension is included in the components evaluation, it is
important to note that the crack resistance curves depend on specimen geometry as
well as specimen and defect dimensions and are influenced mainly by the multi-
axiality of stress state across the ligament, Fig. 2 (1-3). Therefore an essential point
of view is the interaction of fracture mechanics material laws or parameters and the
multiaxiality of stress state in the component.

Within the scope of several research programs performed at MPA Stuttgart
large scale specimens and components with dimensions like the primary coolant
lines of PWR-plants were investigated (4-9). In addition to the experimental investi-
gations extensive numerical calculations were performed using the finite element
method conceming linear-elastic as well as elastic-plastic material behaviour.
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On the basis of these investigations a methodology for the fracture mechanics
evaluation of degraded components, taking into account the multiaxiality of stress
state, was developed and applied to degraded components.

EVALUATION METHODOLOGY

The investigations performed (9,11,12) have shown that:

- a quantitative assessment with regard to crack initiation is possible by comparison
of the effective (physical) crack initiation value Jie¢r with the calculated compo-
nent stress (crack driving force). Jiq¢ is determined from the stretched zone as
measured in a scanning electron microscope.

on the basis of the calculated multiaxiality quotient q across the ligament the lim-
its of applicability of the fracture mechanics concepts can be estimated and a qual-
itative assessment with regard to the fracture behaviour of the component and the
transferability of the crack resistance curve of the specimen to the fracture behav-
iour of the component is possible. Accoring to (3) q is defined as the quotient of
the v. Mises equivalent stress O, and the first invariant of the stress tensor
(09 =01 + 0y + 03) and q will become q = (0, - J3) /G- Small values of q rep-
resent a high degree of multiaxiality.

for small multiaxiality quotients in the ligament (q <0.3) and a derivative of
dg/dy <0 only very little or no stable crack extension before fracture can be
expected (1-3). Increasing stable crack growth is to be expected if the derivative of
q accross the ligament becomes greater than 0 (dg/dy >0).

According to these results the following steps are used for the fracture mechan-
ics evaluation of degraded components, Fig. 3:

Step 1: Make available or select material data for the component to be concemed.
a.) Yield strength, Young’s modulus, true stress-strain curve as input for
finite element calculations
b.) fracture mechanics material characterization (Jjef, Jr-curve)

Step 2: Perform finite element calculation for the component to be concerned using
elastic plastic material behaviour.
a.) calculation of the component stress (crack driving force), e.g. J-inte-
gral as a function of the load.
b.) calculation of the multiaxiality of stress state across the ligament
(g-gradient) as a function of the load.

Step 3: Determination of the initiation load by comparison of J;e¢r (e.g. determined
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Step 4:

Step 5:

Step 6:

Step 7:

by CT20 specimen testing) with the calculated crack driving force (e.g.
R-curve method) from step 2a.

Perform a Finite Element calculation for the standard fracture mechanics
specimen used in step 1b. (Calculation of the multiaxiality of stress state
across the ligament (q-gradient) as a function of the load)

Compare the calculated multiaxiality quotient q across the ligament of com-
ponent (step 2b) and specimen (step 4).

If the multiaxiality of stress state of the specimen and the component
(step 5) is not comparable select other fracture mechanics specimen type
(CT-, TPB-, DECT-, SECT-, CCT-, C-form-specimen, ...) and do FE calcula-
tions for this type of specimen (e.g. (10)) and repeat step 5. If a specimen
with a comparable multiaxiality of stress state across the ligament is availa-
ble determine the fracture mechanics material characteristics of this speci-
men (step 1b).

Evaluation of the fracture behaviour (J > Jieg). If the multiaxiality quotient
in the ligament is very small (q <q_~ 0.3) and the derivative dg/dy <0
only very little or no stable crack extension before fracture can be expected
(in this case no Leak-Before-Break behaviour can be expected).

EXAMPLE

Examples for the application of this fracture mechanics evaluation methodology on
degraded T-branches and elbows with dimensions like the primary coolant lines of
PWR-plants are described in (11) and (12) and for component similar specimens in
(13). Because of the limitations of this paper a more detailed description is not possi-
ble. The experimental results show good agreement with the fracture mechanics eval-
uation according to the methodology described.
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Figure 1 Evaluation of degraded piping components
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Figure 2 Crack resistance curves of specimens of various size and geometry
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Figure 3 Flow chart for the evaluation of degraded components
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