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COMPARISON OF CRACK-TIP STRESS EVALUATION METHODS IN
ELASTIC-PLASTIC AND CREEP CONDITIONS ON CT SPECIMENS
L. LAIARINANDRASANA*, R. PIQUES**, B DRUBAY*

In the nuclear industry, the behaviour of crack like defects in
components operating at high temperature must be under
control. Some methods for calculating the time of crack
initiation from pre-existing defects are needed. For this purpose,
correlation is checked between Ti (initiation time) and local
parameters such as the largest principal stress at a characteristic
finite distance d from the crack-tip (o4 criterion) [1].

This paper compares two methods t%r calculating this largest
principal stress (for 8 = 0 see fig.1 for 8 definition) : finite
element analysis and theoretical methods (stress fields described
by Hutchinson et al(HRR) [2] or by Riedel and Rice (RR) [3]).
Results were used for analysing correlation between Ti and the
largest principal stress, in order to compare it with the nominal
stress versus time to failure curve for smooth specimens.

1.INTRODUCTT

The behaviour of crack like defects in components operating at high temperature
where creep is significant must be under control. Some methods for calculating
the time of crack initiation from pre-existing defects are needed. For this
purpose, an important test program named AMORFIS has been performed, at
CEA Saclay, on 316L(N) austenitic stainless steel CT specimens operating at
high temperature under monotonic and cyclic loadings with or without holdtime.
In this paper, we are interested in pure creep tests at 650°C. Based on these tests,
correlation is checked between Ti (initiation time) and local parameters such as
the largest principal stress at a characteristic finite distance d from the crack-tip
(og4 criterion) [1].

Two methods were used in order to calculate the largest principal stress :
finite element analysis and theoretical methods (stress fields described by
Hutchinson et al (HRR) [2] or by Riedel and Rice (RR) [3]). In fact, calculations
have to be performed with two steps : the initial loading (plasticity) and the
actual creep test.

* CEA/DMT - CEN SACLAY 91191 GIF sur YVETTE cedex FRANCE
** Centre des Matériaux EMP, URA CNRS n°866 91003 Evry Cedex, FRANCE
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2.1.Material

The alloy which is an 316L(N) type stainless steel was provided in a 30mm thick
rolled plate in an annealed condifions (annealed at 1100°C and water-quenched).

TABLE 1 - 316L(N) chemical composition (Wt. Pct.)

C Ni_ Cr Mn Cu Si Ti S P Mo Co Nb Ta N2 B .
0.02 12.2 17.51 1.76 0.130.35 0.004 0.004 0.021 2.35 0.11 0.005 <0.010.071 0.0014

The average grain size is about 50um, with a great scatter on the
distribution of size per grain. The tensile stress-strain data as well as the creep
constitutive laws are given in the Table 2.

2.2. Test procedures

Six creep crack initiation tests were carried out on normalized CT25 specimens
which present two different geometries at the crack-tip : machined notch with a
tip radius less than 100pm (CT n°22,23,33,39) and fatigue precrack at room
temperature (CT n°52,53).

These creep tests (Table 3) were performed at 650°C on a servo-
mechanical "“"MAYES" machine. Load point displacements 8(t) were measured by
using extensometer attached to the specimens. Crack lengths a(t) were measured
by the DC potential drop technique. The initiation time Ti was determined from
a(t) data, as the time necessary for the crack to grow from the initial crack front
over a critical distance d = 50um, and tests were stopped after only about 150um
crack growth. CT specimens were then fatigue opened, and fracture surface were
examined with scanning electron microscope.

L AND ANALYTICAL CALCULATI

3.1.Numerical calculations

CASTEM 2000 finite element code [4] was used to perform numerical
simulations of the loading (elastic-plastic calculations), and the creep tests, until

t =~ Ti. The calculation conditions are as follows :
- Plane strain, with Von Mises criterion :
- Small deformation and large geometry changes ;
- very fine meshes (5um size) at the neighbourhood of the crack tip (fig.1).
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3.2.Singularities at the crack tip

In the literature, the stress distribution at the crack tip is controlled by some
loading parameters which deal with the state of the specimen during the test. Rice
[5] showed that J is the loading parameter in elastic-plastic conditions. Riedel [6]
found, for creeping conditions, C*, and C* loading parameters, according to
respectively extensive primary and secondary creep. The stress distribution in the
vicinity of the crack tip can be expressed as :

1

ng+1
oy = _Cr ™ 6(8,ny ), where I, =10.3 0.134 438 (7]
Bklnkr ny Ny

k =0, 1 or 2 for respectively plasticity, primary or secondary creep ; Cy is the
adequate loading parameter ; r is the distance from the crack-tip ; B an({‘ n; are
given in Table 2 (ny = n) ; G is a tabulated angular term [2].

J, C*, and C* loading parameters are defined by using contour integrals
but several "simplified methods" were proposed to evaluate them. In this text, we
use especially the simplified method proposed by the "Ecole des Mines de
PARIS" (referred to as EMP simplified method[8]) which is based on reference
length (L,ep). This method deals with the assumption that the behaviour of a
cracked specimen is similar to an uniaxial tensile bar of length L ¢, submitted to
an applied reference stress ©,¢. The characteristic length L,¢ was fitted in such a
way that the calculated load point displacement were in good agreement with the
measured value. Lmevwas) then found to be proportional to the remaining

-a

ligament : Lo¢ = v (
4.RESULTS
4.1. Experimental results

Experimental initial conditions of tests performed on CT specimens are given in
Table 3, where we have also included the initial values of reference stress (Crep)
calculated from limit-load analysis by MILLER [9], under Von Mises plane
strain conditions :

2
Opet =———; m| 2 )=1.158 (1417022 )+ .[2.702 + 4.500 i)
( a ) w w W
- BWm

In this text, all numerical and theoretical calculations were made from
CT53 specimen. F = 12kN and Ti = 110hours.
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4.2. Comparison of global parameters

For the initial loading (elastic-plastic conditions), one can show the evolution of
the applied load F versus & (load-line displacement). In fig.2 comparison is made
between experimental points and both finite element and analytical calculations.
Because the specimens have the same initial crack length, experimental points are
the average points from all of six creep tests. Notice that the same experimental F
versus & curve was obtained for "machined" and “precracked" CT specimens.

Compared to experimental points, finite element code underestimates the
load-line displacement under plane strain hypothesis and overestimates it, in
plane stress condition. We assumed plane strain condition because of the
thickness of CT specimens (B = 25mm). However, this hypothesis leads to lower
values of 8, and parameters which depend directly on it.

According to reference length concept [9], & = ¥ (W-a)Boye" ; where
y = 13.6 for Von Mises plane strain conditions, was adjusted from primary creep
data. One can see in the fig.2 the curve calculated with this method. There is no
elastic part in the curve due to the non linear elastic behaviour assumed.

As T is proportional to 8, similar comparison results should be expected by
using finite element and simplified methods.

During the actual creep test, constant load is maintained. Then, we can
compare the evolution of load-line displacement creep component d.(t) (fig.3).
The EMP simplified formula [9] is : &(t) =y(W-2)B O 1tP1, (y = 13.6).
y adjustement was done with this formula by using all creep tests. For CT53 test,
this simplified simulation underestimates the experimental result 3.*P.

Finite element model underestimates severely 5.(t), compared to 5.°*P. We
already noticed that it is due to the supposed plane strain conditions.

For CT n°53 (F=12kN see Table 3), calculations of global loading
parameters Jexp, J(EMP), J(FE), C*, and C* are summarized as follows :

- J(FE) was obtained by CASTEM2000 finite element code [4] ;
J(FE)=4.14N.mm"!,

n F
- =— . - -1
Texp =2 n+ 1BW- a)sexp [ref.8] ; Jexp = 7.5IN.mm™%.
ng F ng .
- Cx (EMP) =2y -y 1§Bk°ref [ref 8] ; where the index k = 0, 1 or 2 for

plasticity, primary or secondary creep ; Cy is the adequate loading parameter (J,
C*, or C* and F is the load. For CT n°53, J(EMP)=10.54N.mm'l 3
C*,=0.5N.mm-L.h-P1 and C*=0.014N.mm"L.h"1.
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4.3. Local stresses

Non Linear Elastic Fracture Mechanics (NLEFM) give the HRR stress field that
can be compared with elastic-plastic finite element calculations. As results we
show in fig.4, the largest principal stress Oyy singularity, from the crack tip
r=0tor= 10mm ® = 0)

o.. calculated with finite element code has its maximum value at
r~10pm. We can explain this as the blunting effect [10]. In fact, calculations
were made with "large geometry changes formulation” so the code took into
account blunting. In the same way, the code can include the bending effect in the
ligament, thus when r> 3mm, Oyy decreases and becomes negative (compression)
at about 12mm from the crack tip. HRR field is available only in the logarithmic
linear part of oy,-curve : (10pm<r< 1mm). On the one hand (r<10pm), the
HRR field does not take into account the blunting effect, on the other hand
(r>1mm) the HRR field represents only the stress singularity and neglects the
non singular stress value.

The validity of HRR field (10pm < r < lmm) is clearly shown when one
compares Oy calculated by finite element method and the HRR stress field
calculated with J(FE) (dashed line). Solid line is the HRR stress field calculated
with Jexp. AS Jexp calculation is related to experimental value (it does not suppose
plane strain or plane stress conditions) this HRR field is probably the good
singularity ahead of the crack tip.

HRR stress field calculated with J(EMP) overestimates the values of oyy.
Nevertheless, the "scatter” on Oyy is reduced very much compared with those ofy J
1

n+l Ao
'Since:o,-j=( d )Ml&(e,n), then :—2 z—l—él
Bolnr c; n+l]

The variations with distance (fig.5) and time (fig.6) from the crack tip of
the "numerical® stress fields obtained by finite element analysis have been
compared to the "theoretical” ones deduced from the application of Fracture
Mechanics of creeping solids.

Fig.5 shows the stress singularities at t = Ti (Ti = 110hours for CT
n°53). Here "theoretical” and "numerical” stress fields are compared. RR field is
available for 10pm<r<Imm. Finite element calculations underestimates Oyy
values due to the plane strain conditions (see also fig.3 for load-line cre€p
component comparison). At r = 50pm, the RR field calculated oyy is about 13%
greater than finite element ones. Thus, both results are in gc»ody agreement and
indeed, C*;, is a good loading parameter for primary creep.

In fig.6, we compare the o,. stress at 50um versus time. The finite
element relaxation rate 1s lower than RR field ones. It depends on the stress
initial value which is underestimated. Oyy comparison during the large scale
primary creep leads to a difference of about 13% (already given at Ti = 110h).
This remark is relative to the same crack tip geometry (precracked specimen).

197



ECF 10 - STRUCTURAL INTEGRITY : EXPERIMENTS, MODELS AND APPLICATIONS

DI I

Global approach of the Fracture Mechanics for creeiping solids correlates Ti with
the loading parameter such as C*, or C*. For 3 6L(N) stainless steel, many
works have been done in this way [11][12]. Usually, Ti.C*® is found to be a
constant of the material.

In this paper, we are interested in a local approach based on correlation
between Ti and o,,. Such approach is similar to nominal stress (Cnom) Versus
time to failure (116’ for smooth specimens. In this approach, o,, must be
calculated at a characteristic distance d from the crack tip [1]. d=50pum for
obvious microctructural meanings : it is the average grain size, which can be
related to creep crack initiation mechanisms [11].

In fig.7, we ptot Oyy at d=50um, calculated by both finite element
method, which take into acéount the crack tip radius for "machined specimens”,
and by RR field (available only for precracked specimens), versus initiation time.
The four lowest points are corresponding to "machined specimens”. We can
compare the plots with the nominal stress (Gpqp,) versus time to failure (tp) curve
for smooth specimen : the same trend is observed. The master curve (Cpom~tR) is
conservative compared to Ti-o,, correlation. In fact, actual master curve should
be higher than the plotted nomiral stresses versus time to failure curve :

-time to failure (tg) for smooth specimens is controlled by ductile rupture
mechanisms, whereas in cracked specimens, time to initiation (Ti) depends on
intergranular mechanisms ; tp is then underestimated compared with Ti ;

-in fig.7, nominal stress which is correlated with time to failure, is the initial
stress where there is neither correction with the deformation increase during
the test, nor correction with the creep damage evolution.

On the other hand, instead of using o y-stress, one can define a damage
function which deals with parameters such as fargest principal or equivalent stress
or strain. For instance PIQUES [11] proposes an incremental creep damage law
as:dD = Aoy, %€ Pde., where A, o and B are material constants. As a matter
of fact, for the present approach o = 1 and p = -1.

6.CONCLUSION

1/ Six creep tests were carried out on normalized CT25 specimens. The
comparison between the calculated largest principal stress o, at the crack tip,
shows that HRR and RR fields are in good agreement with finite element
calculations when 10um<r<1mm, and so, loading parameters such as I, C%
and C* controll the stress singularities ahead of the crack tip.

2/ (tR-Opom) correlation (where tp is the time to failure for smooth
specimens) 18 very conservative compare‘a with (Ti-o,,) ones on creep crack
initiation regimes. In fact, crack mechanisms and stress corrections considerations
should bring (tg-Opom) Master curve nearer to (Ti-oyy) points.
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TABLE 2 -316L(N) Tensile stress-strain data and creep constitutive laws (650°C).

Young Modulus 0.2%Yield stress Ultimate tensile stress
140600MPa 125MPa 360MPa
Plasticity Primary creep Secondary creep
e=Bgon €=B,c01tP1 £§=B,0"2 (h])
‘ o (MPa) o (MPa) o (MPa
By n B n P1 B, Ny
7.65.10-1T] 3,60 [6.78.10-11] 5.47 0.48 [1.70.102%] 6.99

TABLE 3 - Creep test conditions (650°C) [p : precracked , m : machined]

Specimen | a/W | Load | o |Initiation time | Test duration
number (kN) | (MPa) (hours) (hours)
CT22 0.55m 15 119.3 24 66
CT23 0.55m | 13.5 107.4 49 145
CT33 0.55m 12 95.5 222 697
CT39 0.55m | 14.5 115.3 127 262
CT52 0.55p | 14.5 115.3 54 258
CT53 0.55p 12 95.5 110 291
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Figure 4: Theoretical and numerical largest principal stress distributions ahead
of the crack tip. Lines are HRR stress fields with :
- J(EMP) : EMP simplified method with reference length
- Jexp © calculated with experimental (F, 8) curve
- J(FE) : calculated by finite element code CASTEM 2000
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Figure 5: Theoretical and numerical largest principal stress distribution ahead
of the crack tip
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Figure 6:Theoretical and numerical relaxation of the largest principal stress Oyy
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Figure 7 : Comparison between (Gpop, - tg) and (Ti- yy) correlations
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