Crack Propagation in a Composite Laminated Plate under
Bending

Viktor Bozhydarnyk, Vasyl Shvabyuk, laroslav Pasternak, Volodymyr Shvabyuk

Lutsk National Technical University, Lvivska st5,743018 Lutsk, Ukraine,
e-mail: shvabyuk@Ilutsk-ntu.com.ua

ABSTRACT. The study of thin plates weakened by cracks isogsity important in the
case of composite materials, due to the possibiftynterlayer delaminating. Crack
growth parallel to the median surface of a platelenbending is less dangerous than
the perpendicular crack propagation; however, tinalgsis of such defect’s evolution is
of great interest and has its possible applicatiomengineering analysis of fracture
and fatigue of composite plates. In the presendystthe bending of a circular plate
containing a penny-shaped internal crack is congdebased on the equations of the
improved theory of the middle thickness plate bemdihe influence of a transverse
anisotropy and a length of the crack on a stresd displacement of the plate are
analyzed.

INTRODUCTION

This paper considers bending of a circular trarsalgrisotropic plate, containing an
internal penny-shaped crack, which is parallelht® median surface. Similar problems
of bending, stability and vibration of cracked Kihoff-Love plates were considered
earlier by Yeghiazaryan [1], Marchuk and Khomyak, [Serensen and Zaytsev [4],
Cherepanov [5] and others [7]. However, abovemeetiosolutions do not consider
anisotropy and transverse compression of the plédte.stress intensity factors are also
neglected due to used one-dimensional models, andeh these solutions cannot be
applied to analysis of fracture initiation and pagption.
Therefore, this paper utilizes the improved theohybending [6], which accounts

transverse shear and compression. This allows douat transverse anisotropy of the
plate and to study stress intensity induced bythek.

FORMULATION OF THE PROBLEM

Consider a circular plate of a radils and a thicknesh under a surface pressuge
distributed uniformly at the face=-h (Fig. 1). At the distancéy, 0[0;h| from the
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bottom face of the plate, the latter contains angeshaped crack of a radilhﬁ[O,R].

The crack is parallel to a median surface of tlaepl
To solve the stated problem one can utilize thertegie [1], according to which the
plate is formally decomposed into two domains wdifferent bending rigidities:
* a domain containing the crack, which cylindricajidity equals the algebraic sum
of rigidities of the upper and lower plate elements

D,=D; +D; =dD, (d=1-33+35°,=h,/ 2h). (@D)
(Here D, =E(2h- h))3/12:(1—,8)3D is a rigidity of the upper plate part above
the crack; andD; = #°D is a rigidity of the lower plate part below theck; h, is
a distance from the bottom face of the plate todtiaek; E = E/(l—vz); E is an

elasticity modulus and is a Poisson ratio);
* and a domain without a crack, which cylindricalidity equals the rigidity of the
unnotched platéd, = D = 2ER*/3.
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Figure 1. The sketch of the considered problem

It should be noted that the technique [1] can belieg in cases, when the plate
model does not take into account the transversepasgion, i.e. when vertical
displacements do not depend on the transverseioated . Within this technique it is
impossible to determine the real radial stresswhich act in the upper and lower parts
of the plate over and under the crack, respectiviherefore, henceforward the model
of plates of a middle thickness [6], which utilttee improved equations of bending, is
used.

SOLUTION STRATEGY

The differential equations of bending of transvBrssotropic plates under uniformly
distributed load can be written in the cylindricabrdinate system as follows [6]:
DiAZW :q2_£1h2A292_‘92h4A292’ (2
i . A dq
Kaw) =-q,; Ay - =-2 %
i T q2 i r2 E dr
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D, ro(o;l 2
whereD, ={ ( ),izlfor rD[O;I),andi=2foer(I;R];Asd—2+li;
D, rO(I;R) dr® rdr
1_4 h - _ZE — —IE- | =2h3 /72 K — ' . — - -
K'=2Gh; € ==%=; D =D,=IE; | =2h*/3; K/'=K'=4G'h/3; ¢,=-0,5q;
3 5G
(i) O _ 2 & & . R _
WO =—cefaw - g -t WA g d=as uwow h=uww b for the

domain r>l; h=h"=h1-p8); pB=h/2h q,=q,=050,((-h)-q),
G,=0,=0 +o,(h-h), u,w,w,=u,w,W; D =D =I"E ; I"=2h*(1-B)/3,
Ki=K;=4Gh(1-B)/3 or D,=D;=I"E; 1 =h’/12; K =2G'h/3;
qi1:q1:O’50-z (h_ h))1 qi2=q2=—az(h— h)) and ui’W’Wr’h: u,w, V}_I, 9/2 for
the top and bottom parts of the plate in the domaisl, respectively;
=2(1-0,787) = ; £, == (1) 5; E=E/(1-12); A=Y v"=0,5"G G

5 G 20 E 1-v
E,E, G, G,v,V' are the elastic and shear moduli and Poissorsrafithe plate in
the longitudinal and transverse (with primes) dimts; g =g=cons is the
distributed load applied to the top surface of thiate (z=-h); u are horizontal
displacements of the median surfaces of the upped@ver parts of the platey and
w, are the entire and shear vertical displacementshef median surface of an
uncracked part of the plate; the Roman numeratsupérscripts ofw,w,, u and g, d,
denote the order of a derivative on the variabtesubscripts > and &> denote
respectively upper and lower parts of the platdhatcracked domair2h is a thickness
of the plate; h, is a thickness of the plate part which is undex tnack. In the
formulated problem one assumes that the bottom faeeh) of the plate is traction
free, hence,q” =0, and the stres,(h-h) equals to the contact pressure between
crack faces.

One can obtain the value of normal contact presguréor the stresss,(h—h))
within the framework of the Kirchhoff — Love hypeatbes for thin plates, or based on
the Timoshenko plates theory. Both states thatcadrtlisplacementv (together with
their derivatives) does not depend on the transveoordinatez, i.e. w =w, = w.
Therefore, the first equation of the system (2)tfar upper and lower parts of the plate
can be written as:

D;Azwz%zzq_ P Dl_AZquzz p. 3)

Thus, the approximate value of the contact presset@een crack faces, according
to Eq. (3), is equal to

T P o | b R
(D +D)Aw=q; p D+ D qs'/o, (4)
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where d =1- 38+ 35°.
Hence, the normal contact stress acting on cramsfaquals
o,(h-h)=-p=-a8/3. ) (5
Stresseso, and o,, and displacementt) (r,z) and W(r,z) of a plate in the
uncracked domainr(d (I ;R]) , according to the model [6], are as follows

N M zG’ G
g =—L+ " Z -0.6If -NgqR=|; 6
ey (2 -oe) a-nahd) ©
0, =0+ 355 I 4= 2(a' -0, 6, =(q' +q);
z ql 4 h h3 21 2 q q 1 q2 q q 1
2 1-v°
U(r,z)=u(r-z — dw_ dw 1- (1 VD) 22 —( )doez3;
dr dr 3h 8E'h dr
v AL p Dol
W(r,2) =w(r+2a,z[222 + A=A w+ 8EhD3; (7
where A=V ; B(2=6B7- 3—; Go=— 1 (E—v"(3+v)j;
1-v) h? 4(1-v)\ G
1 E - AE
E=—F—| 4d—-V"(7-V)|; Ww=w+1.5¢,q,h/E, B, =1+ ;
° 20(1—1/)( G ( )j 2% * 7 2aG
VAE ‘ d’w, v d
-B - : a,=05-V'[N; M, = dz=- ——)-gHKq,
By = B2 G 0 =05-v = [z de=- g TR G g
N, —Iadz 2Er(—+v )+2Ahg Q =K ddf are the bending moment, normal
1 (d? vdy). : . .
and shear forces, respectlvew,:lT a —d— is a differential operatory is a
re r

tangential displacement of the median surface eiiicracked domain of the plate.
The general solution of Eqgs. (2) and (4) has tho\fvjhg form
w =Ar’+Br? In—+CIn—+K|+ 9if , (i=1,2)
R R
540 , ®)
w =AY+ B;’ln - q,Pl4K, y= Fr+ L+,

where integration constantsA,B,C;, K,A", B F, L are determined from the
boundary conditions, and are the particular solutions.

From the displacement and bending moment boundsdmeslitions it follows, that
four integration constants are equal to zeéBp=C = BY = L. =0. The notations used
here should be extended to account values corrdsppto the upper and lower parts of
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the plate. Thus, these faces will be denoted wghss«+» and «-», respectively. Then
for the cracked domai(lo,l) of the plate displacements (8) for the plate pader the

crack can be written as,
W= AT WA Rk, = R 2R (g
64D, r 2E

For the uncracked doma(m,R) displacements are equal to:

-~ r qr*
WZ:A§r2+BZr2InE+ K2+64D ; (10)
V\I(Z)—A,<2)+B}2’Inr—qr 14K, u = ;—gr.

Integration constantsy, B,, K, B?, AV, F are determined within the boundary

conditions at the edge =R of the plate. In the case of a hinge supportetelzese
boundary conditions write as,

w,(R)=0, w(R=0, M,( R=0, N,( R="C. (11)
Satisfying conditions (11) one can obtain that
qR'B+v) __ &lfq

=- , AP =qR/4K; E=
A 32D(A+v) D +v) A6 ? 12)
R 5+v(, 32, It R
2:(?4D 1+|/(1 B+ sz Mr2= q16(3+v)(1__)
dw? d aR
Rj= K—_| =-D—(A ==
Q2(R) dr | _, dr( V\é)rZR 2

Here it is assumed that the constaB;sBﬁZ) can be determined from the equilibrium of

the shear force®, and under the given load they are ze@gzé sz) =0).

Except the conditions (11) at the edge of the platés necessary to satisfy the
contact conditions between the cracked and uncdad@mains ar =| :

w, (1)=W(1,h@-B)); o (1,8h) =0, (1,h); N7 (1) :jh“_rbar (,2)dz, (13)

i NT(r) M (r) z2G° ( Gj
where o (rz)=—-*%+— + -0.15 - 0.2%\ —|;
(rz)= === g (4 -0a56) @- 028 by
zZ = z- h+ R/2 is a local coordinate of the plate part underataek, which is directed
downwards.

Hence, the normal and shear forces and the bemdorgent acting at the bottom
part of the plate under the crack are defined gs [6

NS =hE(W)' +vd/ i+ hAg,

__dw (d’W v dw
er:K?' Mrlz_Dl(F-'-r dl’j 02590(]|2ho
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Here M (r)=M (I )+“°’1+_6"(| =)o Qu(1)=Q,(1)+q,1/2; Q,(1)=-al/2.

Satisfying the boundary conditions (13) at the rfiaie r =1 one can obtain
equations for determination of the rest of unkndmlegration constants:

A2 -tAI2+ K. -K +6q'4 1-o- a“)+ Ngg)=0,
N (1)h/ B+3M5 (1)1 5° —3Mr2()+04(q p)N°G; (14)
N> (1) =3B8(1- B)M,,(1) /h-0.9hG’f /4,

C M) Ny O0dGE v 1 (E _
where £ =22 1-0)1-p)- 22 L1-0); G _—4(1_V)(G, y (3+V)j,

B(B) =a,(1-B)[8- f.(B) B,— Al; & =83A(L-BYh* 117)=45(t-1);

- (V) (-B)F qrR? |
t=1+2A1-BYNW /1>, A = ;M (1) ==—(3+v)1-6%);, 8=—;
L(B8)=1-B)E+28-8); f=1-(1-28)"(1+ 2B( + B)).

Solving the systems of equations (12) and (14) kaneaously, one can derive the
integration constany, the biggest deflectiony, (O) of the bottom part of the plate at

its center, and the momeMr‘l(I):

qR?

_ o1 _ , # ] 02q-p)IG 0,1gR G f
32(1+V)D{(3+V)(1+0 G 1)j+169°ﬂ 5R2}

3(1+v)BD 24 1+v)BD

V\/l (O) qR4 5+|/|:1 (%‘1)04_582(34-'/)(1_ gzﬂj+%h_2(l+62(%2_t)j:|

Al:

+

64D 1+v 20(5+v) 3+v) 5+tv R
0,20°(q- p) R G  0,16°qR°I*G' T gh ,
* 3(1+v)BD ' 24 1+v)B°'D & BUA) (15)

M>(1)=8M,,(1)+0,48%(q - p)h*G"/3+ 0,Bqif fG’ /12
:%;RZ(:B+|/)(1—92)+ 0,48%(q- p) WG'/3+0,18qff fG /12

Maximal stres;, (0,+ h,/2) can be obtained from Egs. (6), (13) as

(0+h0/2) N_ (l) 3|\/|r_1(0)

+0,%" 6j1
26n T 2871 P !
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where N (1)=3B8(1-B)M,,(I) /h-0.5hGf / 4; Mrz(l)=%(3+v)(l—82);
M;l(o):31+—6" pl? + B°M,, (1) +0.48%(q - p) h®G’ /3+ 0.BqH G /15
—1_(1_ 2 0= 1 E_ n
f(B)=1-(1-2B) (1+ 203( },8)), G —4(1—|/)(G' v (3+v)j.
Substituting the values oN;,(1) and M(0) into Eq. (15) one can obtain the

closed-form formulae for the maximal streg§ at the external surface of the plate
under the crack:

0,(0,h,/2) =%{1+(§—1}0ﬂ+ 0.55q; (17)
a;l(o,—ho/z)::”(3;"2%[(1—92 ) 1- 28)—%92}— 0.55°q- 0.0267qf(B) B.

For determination of stresses in the plate parvatloe crack, one can utilize Eg. (6)
in the local coordinatesz(, r):

. N" M’ G’ G
o:(r2)= e+ Mz + 2 (z-0st - p)) @ - 0mg REATS ]
where z, = z+ S h is a transverse coordinate of the upper part efpllate above the
crack, directed downwards to its median surface.

The values ofN", M;" are obtained from the contact conditions on therface of
cracked and uncracked domaing atl :

N ()= e,0.2dz; o7 (1,-@-ph) =0, (1 ~h). (19)
Satisfying conditions (19), one obtains
N (1) =-38(1- B)M,,(I) /h+ 0.4hG’ f /4 (20)

M, (1) =h (1= AN (1) + (1= B)'M, (1) + 0.4 = 5)" ph'G".
And hence,
Mi(1)=(1-B)’M,,(1)+0.4(1- B)’ph®G" I3+ 0.1 B gh*fG" /1. (21)
Consequently, maximal stress, (0,+ h, /2) can be obtained from Eq. (18) with the
account of Egs. (20), (21),

N:l(l) 3Mr+l(0) 0 (-
20 An 2@ gy = 0% @ p) 22)

whereh, = 2h" = 2h(1- 8); M;(0) = Mr+1(l)+%(q -p)l*.

The problem is solved under the assumption thaaipdied load causes crack faces
to be in a smooth contact, thus, the opening modsss intensity factor (SIFK, is

o:(0h, 12) =
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equal to zero. At the same time, in front of thempeshaped crack a shear stress exists
even for the smooth contact of crack’s faces, witz@hses nonzero values of a sliding
mode SIFK,. It is a challenging problem to find the lattersed on the proposed

improved theory of plates of average thickness. él@x, one can obtain the qualitative
estimation of SIF using the approximate formula

K (LB)=2 (L AV 23)
where 75, (1, 8) :‘3,3(1— \/ﬁ) Q (1)

h
front of the crack.
In particular, for a case when the crack is plaaethe median surface of the plate

£=0.5), SIF K, equals
( ) i

K, (1,0.5)= 0.3/ BR /. (24)

Together with the Paris-like crack growth law thisows to simulate the internal
fatigue crack propagation in the composite lamate

To verify the obtained results the dual boundasment method is utilized. The
boundary integral equations are adopted for stupgininternal closed cracks. Special
numerical quadratures, polynomial transformatioms shape functions are utilized for
accurate determination of the stress intensityofaddumerical results are in good
agreement with the analytic calculations.

=\/T54«/ﬁ6’,8( 1—\/E)R h is a shear stress in
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