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ABSTRACT. This papers aims at describing the usage of the eXtended Finite Element  
Method and more widely  the fracture mechanics in a general framework. First,  the  
numerical approach with its hypotheses is described. Then, an experimental procedure 
is developed to validate some assumptions about crack orientation, the numerical tool  
has been used to estimate an a priori crack propagation behavior. Finally, conclusions 
are drawn around the opportunity of using such predesign tool.

INTRODUCTION 

Cost  reduction  in  combination  with  performance  improvement  implies  weight  and 
shape optimization, whithout forgetting safety aspects. Failure analysis can be carried 
out  with  fail-safe,  safe-life  or  damage  tolerant  approaches.  While  in  the  first  two, 
studied parts should undergo a given number of cycles without cracking, as they could 
not be changed or repaired when a crack occurs, the latter addresses the problem of 
parts that are regularly inspected and can be changed or repaired if a detected crack 
would  grow  to  a  critical  size  before  the  next  inspection.  More  generally,  damage 
tolerance is used to define inspection intervals by considering an undetectable crack of 
the biggest possible size located in the most critical area and determining the number of 
loading  cycles  until  a  critical  configuration  is  reached.  In  aeronautics  and  other 
industrial sectors, a linear elastic behavior is observed enabling the use of the Linear 
Elastic Fracture Mechanics [1] assumptions where the eXtended Finite Element Method 
[2] has shown to be a numerical  method with very powerful possibilities  in the last 
years. This method has been thoroughly validated on multiple applications where Low 
Cycle  and  High  Cycle  Fatigue  are  considered.  Still,  the  question  remaining  on  the 
physics of a crack propagation cannot be answered by a numerical tool. For that reason, 
an experimental procedure has been developed. Using the XFEM as a predimensionning 
tool for the specimens and load cases, the experiments are built in several steps in order 
to be able to test a mixed-mode crack propagation under varying load conditions. 
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EXTENDED  FINITE  ELEMENT  METHOD  FOR  LINEAR  ELASTIC 
FRACTURE MECHANICS

Developed  for  about  a  decade,  the  eXtended  Finite  Element  Method  (XFEM)  is  a 
numerical  method  based  on  the  standard  Finite  Element  Method  (FEM).  The 
fundamental idea is to simplify procedures (such as meshing a propagating crack) that 
appear to be complex when using FEM, while keeping the robustness of the underlying 
method. The core of the method is the ability to generate additional degrees of freedom 
in areas of interest where the local physics is known a priori such as a discontinuity in a 
field or its gradient, without modifying the existing mesh or interpolation functions. The 
benefit is that the need in mesh refinement is much smaller to achieve a given precision. 
The functions  associated to these additional  degrees of freedom are built  by simply 
multiplying  the  interpolation  functions  of  the  existing  FEM  problem  by  functions 
related to the considered physics. As a corollary, the main advantage is that it is possible 
to  have  an  evolving  local  representation  without  modifying  the  FE  basis.  In  the 
framework of fracture mechanics, this point is of high interest mainly in 3D. Indeed, in 
FEM, the surface of the crack has to be represented by the mesh, leading to the need of 
repeating this step at each time the crack is propagated. If a remeshing is performed, 
some fields have to be transferred from the previous to the updated mesh, which is a 
costly operation and subject to errors. On the opposite, the XFEM enables to update the 
representation  of  the  crack  by  modifying  the  enrichment  functions,  for  as  many 
propagation steps as the numerical representation enables. 

The Level Set method is often associated to the XFEM as a support for the crack 
representation, and thus the building of the enrichment functions. This method describes 
a closed or infinite surface in space by a distance field represented by its nodal values 
on a mesh. The distance is signed to indicate a “above” or “under” position w.r.t. to the 
norma to the surface. The surface itself can be found by interpolating the iso-zero of the 
field.

Enrichment Description For The LEFM
The introduction of enrichment functions is done by using the notion of partition of 
unity. A partition of unity is a set of continuous functions on a domain such that each 
point has a neighborhood on which all functions but a limited set are equal to zero and 
that the sum of these functions is equal to 1. 

Basic enrichment procedure
In the case of LEFM, two types of enrichments are used (see Fig. 1):
-  the  discontinuous enrichment,  or  Heaviside,  which  corresponds  to  the  strong 
discontinuity of the displacement observed between the crack lips, it is applied to to the 
nodes whose support is completely cut by the crack;
-  the  asymptotic enrichment,  or  crack  tip,  which  corresponds  to  the  singular 
displacements observed in the neighborhood of the crack tip, it is applied to the nodes 
whose support is only partially split by the crack. 
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These enrichment functions are multiplied by the interpolation functions used for the 
finite element discretization in order to build a richer approximation space. 

Figure 1: Nodes for  
enrichment

 

Figure 2: Discontinuous enrichment 
a

Discontinuous enrichment (Fig. 2)
This enrichment type ensures the representation of the full splitting of an element by the 
crack surface. The function H used is a modification of the standard Heaviside function 
h,  the relation is given by, for any  X,  H(X)=2.h(X)-1.  Where  X is a function of the 
position in space x that will be determined with the normal level set function defined in 
a following section of the document. As a consequence, this function is equal to +1 on 
one side of the crack surface and -1 on the other side of the crack surface. 
Enriching nodes that do not have their  support  split  by the crack would lead to the 
generation of a singular stiffness matrix as there would be linearly dependent functions 
on the same elements. 

Asymptotic enrichment
The second enrichment type ensures the representations of the asymptotic displacement 
field in the neighborhood of the crack tip. It is based on the assumption that locally, the 
crack will behave such has a straight crack in a infinite medium with remote loading. 
For example, the displacement field in the such a case with remote tension orthogonally 
to the crack surface has been given by Westergaard [4] under the following form:

where KI is the stress intensity factor for mode I (opening), r and   are the local polar 
coordinates  associated  to  the  crack.  For  the  two  other  kinematic  modes  (in-plane 
shearing and out-of-plane tearing), the fields have similar aspects. Based on this form of 
physical functions, a basis is defined in order to span all the functions encountered. The 
following four functions are commonly used:
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The  first  function  is  the  only  one  having  a  discontinuity  accross  the  crack  surface 
(between and). The other ones have discontinuities in their gradient and are also 
compulsory to achieve a good representation of the physics.
It is possible to increase the number of nodes concerned by the asymptotic enrichment 
in order to have a larger area where the physics is taken into account. Two approaches 
exist: the first considers that all nodes within a circle of a given radius around the crack 
should be enriched, the second uses the topology of the mesh and the choice of the 
enrichment is led by a number of layers around the crack tip.

Level Set Functions For Crack Representation
A crack is by definition a finite or semi-infinite surface limited by a line. This leads to 
the definition of two level set functions. The first one defines the surface on which the 
crack will be located, it is called „normal level set” function, lsn. The second is defined 
such  that  it  limits  the  part  of  the  space  where  the  crack  really  exists, it  is  called 
„tangential level set” function,  lst. Conventionnally, the crack is defined by „the iso-
zero of lsn, where lst is negative”. It is recommended to build these functions such that 
their gradients are orthogonal and normed to 1 at any point. They are generally defined 
as analytical surfaces when possible, or computed from a mesh for more complex initial 
geometries. If the orthonormality of the gradients is verified, the level set functions can 
be used to define the local crack coordinates with the following relationships: 

Also,  the  modified  Heaviside  function  can  be  defined  thanks  to  lsn with  the 
relationship: „H(x)=sign(lsn(x))”.
The distribution of the level set functions signs and the crack polar coordinates can be 
observed on Figure 3.

Figure 3: Relationships
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Stress Intensity Factors Computation
The J-integral is computed under its domain form on a domain surrounding the crack 
tip, using the Eshelby tensor. The three stress intensity factors are extracted using the 
interaction integral method where the test fields correspond to each crack kinematical 
mode taken separetely. 

Crack Propagation
A Paris-Erdogan propagation law is  used in order to  determine  the crack increment 
related to the number of cycles.  The maximum hoop stress criterion is used for the 
propagation angle determination.  It  is  computed based on the average values of the 
stress intensity factors during a cycle: 

PRE-DESIGNING EXPERIMENTS

The ultimate goal of the experiments is to validate two points:  first,  ensure that  the 
direction  criterion  is  sufficiently  representative;  second,  verify  the  validity  of  the 
propagation law in complex cases. The definition of the experiments is led by the cases 
that can be found in industrial applications. The simulations were done with Morfeo [3].

Test Case Definition
Let us consider a housing of an aircraft engine. It will be subjected to complex loadings 
including pressure and vibrations. From that point, several strong assumptions have to 
be made in other to make preliminary experiments with a reasonable cost.  First,  the 
targetted part is thin in some areas, with evolving thickness, the experiment will take a 
constant thickness metal sheet. Then, the representation of different types of loadings 
will  be  performed  by  applying  a  constant  traction  in  one  direction  and  a  variable 
traction in the other direction. 

Geometry definition
For that reason, a cross-shaped specimen will be chosen. A preliminary step of pre-
cracking will be performed in order to have a real crack rather than a notch, which will 
need an initial geometry more complex than a cross. So, the experiments will be carried 
out in several steps: 

• Pre-cracking of the notched specimen (phase 1, Fig. 4)
• Re-manufacturing to obtain a cross-shaped participants
• Complex loading crack propagation (phase 2, Fig. 5)

1019



Figure 4: Phase 1

 

Figure 5: Phase 2

Loading definition for phase 1

The loading conditions for both phases have to be defined carefully. Indeed, the stress 
concentration has to be taken into account. The stress level has to be verified in order to 
remain in the LEFM framework. The figures (6 and 7) show the von Mises stress for an 
applied stress of 1 MPa. The simulation of an imposed displacement (as the mean of the 
measured displacement) leads to identical fields. The notch (here: 5mm depth and 1mm 
height) has a stress concentration factor of about 5.9, and the influence area is small 
compared to the specimen. This information, with the knowledge of a Wöhler curve, 
can help estimate the number of cycles at a given load required to initiate the crack. 
As the crack has to be grown up to  2-5 millimeters to  be settled,  simulations  were 
performed with cracks of lengths 0.5, 1, 1.5, 2mm. The Table 1 represents the case of a 
crack of 0.5mm with several thicknesses for specimen (as the stress is imposed,  the 
relations are linear and “almost independent” from the material chosen, only the row in 
grey was computed). 

Figure 6: Von Mises stress, 1MPa load Figure 7: Zoom on notch
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Table 1 

Thick. Imp. stress Force equ. Force equ. Max. stress C (exemple) m K1 pour 0.5mm K1 pour 0.5mm dN 
mm (MPa) (N) (kg) no crack, Mpa (dK in MPa.sqrt(mm))  (MPa.sqrt(mm))  (MPa.sqrt(m)) for da = 0.1mm
1 1 56.57 5.77 5.9 3.80E-11 3 3.82 0.12 4.73E+08
2 1 113.14 11.53
3 1 169.71 17.3
4 1 226.27 23.07

1 10 565.69 57.66 59 3.80E-11 3 38.18 1.21 4.73E+05
1 20 1131.37 115.33 118 3.80E-11 3 76.36 2.41 5.91E+04
1 30 1697.06 172.99 177 3.80E-11 3 114.54 3.62 1.75E+04
1 40 2262.74 230.66 236 3.80E-11 3 152.72 4.83 7.39E+03
1 50 2828.43 288.32 295 3.80E-11 3 190.9 6.04 3.78E+03
1 100 5656.85 576.64 590 3.80E-11 3 381.8 12.07 4.73E+02

2 10 1131.37 115.33 59 3.80E-11 3 38.18 1.21 4.73E+05
2 20 2262.74 230.66 118 3.80E-11 3 76.36 2.41 5.91E+04
2 30 3394.11 345.98 177 3.80E-11 3 114.54 3.62 1.75E+04
2 40 4525.48 461.31 236 3.80E-11 3 152.72 4.83 7.39E+03

This table can be used to choose a device depending on the load to be applied. The 
plastic area has to be monitored as it should remain “small” for the LEFM. 

Figure 8: Von Mises stress, with crack

 

Figure 9: Zoom on notch

For a 2mm-deep crack, the stress concentration is about 3 at 0.5mm from the tip and 
about 5 at 0.1mm from the tip (see Figures 8 and 9). These distances are quite small 
regarding to the specimen geometry, thus an imposed stress of about a third of the yield 
stress would fulfill the condition for confined plasticity. 

Loading definition for phase 2
Preliminary simulations were done. Unlike the Figure 5, in the present case, the static 
load is vertical (1 MPa) and the alternate load is horizontal (between 0 and 0.1, 0.5, 1, 2, 
10, 10000 MPa). 
Starting from a crack of 2mm in a 5mm notch, Figures 10  and 11 show the pathes of 
the different configurations (about 20mm in total da). The top curved line corresponds 
to a maximum load of 0.1 MPa and the right curve corresponds to a maximum load of 
10000 MPa. In the case where the maximum load is 2, as the mean load of that case is 1 
MPa horizontally and vertically, there is a symmetry that leads to the 45°-line. 
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Figure 10: Crack pathes

 

Figure 11: Zoom on notch
Experiments 
Some tests have been performed to validate the hypotheses for LEFM and to verify the 
propagation law (in mode I, Fig. 12). A first fatigue test was carried out with a load 
oscillating between 1.8 and 18kN (load ratio 0.1) on a specimen of 3mm-thickness in a 
hardened aluminium alloy. It led to a too large stress inducing large scale plasticity. The 
crack  propagated  very  fast  (16000  cycles,  20mm  before  sudden  rupture)  and  it 
encountered a rotation of 45° (Fig. 13), typical of plasticity. This was expected as the 
theoretical stress (simulated without plasticity) exceeded 1400 MPa in the notch area.

Figure 12: 
Experiment

     

Figure 13: Crack surface  
aFurther experiments are being carried out at the time this document was written. 

CONCLUSIONS
Though the experiments have not yet been carried out completely, the present work has 
shown that the simulation in particular  with XFEM is a  powerful tool  to set  up an 
experiment  and  verify  assumptions.  Experiments  will  then  enable  to  validate  more 
precisely the assumptions.
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