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ABSTRACT. By making use of the generalised plane strain thggis, an approximate
stress field theory has been developed accordingvitach the three-dimensional
governing equations lead to a system where a bmoaic equation and a harmonic
equation should be simultaneously satisfied. Thmeéo provides the solution of the
corresponding plane notch problem, the Ilatter pded the solution of the
corresponding out-of-plane notch problem. The sgstan be applied not only to
pointed three-dimensional V-notches but also to r@ha radiused V-notches
characterised by a notch tip radius small enoughvoTexamples are considered: an
inclined elliptical hole in a thick plate under &on, and a uniaxially loaded
shouldered thick plate. Limits and degree of accuraf the analytical frame are
discussed comparing theoretical results and nunaédata from FE models. Practical
consequences on early crack propogation anglesks@ documented.

INTRODUCTION

Due to the inherent difficult of finding a completelution of the elastic stress fields in
notched or cracked three-dimensional solids, mdsthe analytical and numerical
efforts in the literature have been devoted todétermination of the two-dimensional
stress distributions. Pioneering studies on thieeedsional stress fields in cracked
plates were carried out by Hartranft and [&ihand by Kassir and Sih [2].

In the ambit of three-dimensional elasticity, witte aim to simplify the governing
equations, different plate theories (such as thhse to Kirchhoff or Reissner) have
been used to determine the approximate stress fieddr the tip of a through crack in a
thin elastic plate. For an extensive review on toisic, the reader should consult a
paper by Zehnder and Viz [3].

The Kane and Mindlin theory, first proposed to gsalhigh frequency extensional
vibrations [4], was used by Yang and Freund toysthe state of stress in a thin elastic
plate containing through-cracks [5] and by Kotouson Lew [6] to discuss in detail
the ‘out-of-plane’ mode ahead of cracks and sharmpi¢hes. The combined use of the
Kane and Mindlin theory and the Bessel-functioreaigxpansion made it evident how
an out-of-plane shear stress singularity alwaystexin addition to Williams’ in-plane
singularities.

Dealing with ‘blunt cracks’ with a non-zero tip iad, the proof of the existence of
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the out-of-plane mode in three dimensional plateden remote in-plane shear loading

has been discussed by Pook [7] for a parallel-siadh with a semicircular small tip

radius p=0.01 and 0.1 mm). Pook demonstrated that Modedl @ut-of-plane Mode
cannot exist in isolation. If one of these modespplied then the other is always
induced. In order to describe the shape of cragisglacements and to explain the link

between the two modes, Volterrddistorsioni” in a ring element were used [7].

Out-of-plane stress distributions have been doctedem some recent papers by

Berto et al. [8,9] for a variety of notch configticams. Recently Lazzarin and Zappalorto

[10], by making use of the generalised plane stfaypothesis, have developed an

approximate stress field theory according to whilca three-dimensional governing

equations lead to a system where a bi-harmonictegquand a harmonic equation
should be simultaneously satisfied. The former ey the solution of the
corresponding plane notch problem, the latter plesithe solution of the corresponding
out-of-plane notch problem.

Such a solution is reconsidered in the present wittk the aim to:

- discuss the three-dimensional effects arising ihiek plate, infinitely extended in
the x and y directions, weakened by an inclinegbtethl hole. It will be prove the
existence, besides the in-plane stress componeked!to the well known Inglis
solution, of two non-Inglis out-of-plane shear sgeomponents;

- discuss the three-dimensional effects arising irsh@uldered plate of finite
thickness under tension. In particular it will b@yed that the presence of a local
out-of-plane singular mode the crack initiation lasgrary through the thickness.

A NEW APPROACH TO THE THREE-DIMENSIONAL PROBLEM
Consider the Kane and Mindlin hypothesis for displaent components:

u =u(x,y) u,=v(xy) u,=f(z)w(x,y) (with f(z)=bz) 1)

It is easy to verify that as soon as displacementponents are according to Eq. (1),
the normal strains;;, andyyy, are independent of As a consequence, by invoking the
stress-strain relationships, also the stress comieroy, Oyy, Txy and o, are
independent of z [10], while out-of-plane shear ponents result:

T, =Gx bz%—W T,, =Gx bza—W (2

y 0x

Then the equilibrium equation in the z directiomgly gives:
0’°w =0 (3)
where 0° denotes the two-dimensional Laplacian operatovoking Eq. (3) the
equilibrium equation in the x and y direction canrb-written as:
0’0, N 0°c 0°1

A A 4
ox> oy’ dyox @
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Since the stress componeats, o,y andty, do not depend on z, we can introduce the
classic Airy stress functiog(x,y) such that:

_0% _ _0% o’

o T, =— 5
oyt Y axE Y axdy ®)
Doing so, Eq. (4) is automatically satisfied. Aethame time, accounting for the

generalised Hooke law for stresses and strainsntpéane compatibility equation can
be written as follows:

o

XX

O%=v0%,,=0 (6)

the latter substitution being guaranteed by thirBeltrami-Mitchell's equations.

This mean that any three dimensional notch probdéeying to the displacement
law given by Eg. (1) can be converted into a bri@mic problem (typical of plane
stress or plane strain conditions) and a harmoroblem (typical of the out-of-plane
shear case) according to the following system:

O%=0 0?w =0 (7)

Here w andg are implicitly defined according to Egs. (2) ari), (respectively.
Equation (7a) is the common bi-harmonic equatiaviging the solution of the plane
problem, whereas Eq. (7b) is, instead, the harmegi@tion providing the solution of
out-of-plane shear problem.

A NON-INGLISSOLUTION FOR THE ELLIPTIC HOLE

Consider a slim inclined elliptic hole in a platefimitely extended in the x and y
directions and of finite thickness loaded in tensiGupposef is the arbitrary
orientation angle, as shown in figure 1.

The in-plane stress field solution for this problésndue to Inglis. However, as
explained in the previous section, due to threeedisional effects there exists, besides
the common Inglis plane stresses, out-of-planerstesss components, andtyy.
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Figure 1. Inclined elliptic hole in a three-dimesrsal plate under tension
This non-Inglis shear stress field results fromgbkition of the harmonic equation,
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Figure 2. Plot of the stress componenisandt,, along thex-direction for an inclined
elliptical hole (a=1 mm, b=0.1 mm af&45°) and comparison with Eq. (8). Distance
from the mid plane z=2.5 mm.
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Figure 3. Plot of the stress components along dige ef an inclined elliptical hole (a=1
mm, b=0.1 mm an}=45°) and comparison with Eg. (8). Plate thickrtes8mm.
Distance from the mid plane z=2.5 mm.

Eqg. (3), and can be written as [11]:
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T ) b B . .
T, = 22y,t|p | bianp sinh2¢ _d tang+ sin2n
a —b"| cosh2¢ —cos2n cosh2¢ —cos2n

Ty iip O i i
T, = 22y,t|p2 a sinh2¢ tanB sin2n _1
a“—b"| cosh2¢-cos2n cosh€ —cos2n

where curvilinear coordinatesand¢ can be given as a function of x and y [11].

@¢g) (8)
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Figure 4. Plot of the stress components of annedielliptical hole (a=1 mm, b=0.1
mm andB=45°) along a circular path of radiug* 0.01 mm and comparison with Eq.
(8). Plate thickness t= 6mm. Distance from the pighe z=2.5 mm.

It is evident that, due the presence of an indlimaangle,, the out-of-plane shear
stress components have both a symmetrical andtanedncal part. Eq. (8) allows also

to determine the shear stress resultant,| 12, +12, .

In order to validate this theoretical result sonmetd element analyses have been
carried out on a uiniaxially loaded wide platefiofte thickness, containing an inclined
elliptical hole with a=1 mm, b=0.1 mm afig45°. 20 node brick elements have been
used to carry out the numerical investigationshwitvery fine mesh pattern, in order to
get the desired degree of accuracy of the reshitpures 2-4 show a comparison
between the theorical prediction, Eq. (8), andrthmerical results. It is evident that in
all the cases the agreement is very satisfactory.

A THREE-DIMENSIONAL SHOULDERED PLATE
Another interesting example of application is reprged by a thick shouldered plate
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under tension with a zero notch root radius. Is tase the out-of-plane shear stresses
have a symmetrical part which result in a singskaess distribution to be considered
besides the common Williams’ mode | and mode Igslarities [6, 10].

The distributions of the three stress intensitydes; K;, K, and kg along the plate
thickness are shown, for two examples, in figuremd 5. It is evident that there is a
wide zone within the plate thickness whergdfd K, are almost constant. Conversely
K3 has a linear trend (in agreement with the baspotheses formulated in section 2)
up to a maximum besides which it decrease goingtadsvzero on the free-of-stress
surface of the plate.
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Figure 5. Plot of Kalong the thickness for a shouldered plate witldtmm.

The distribution of the notch stress intensity dast allows us to draw some
comments on the crcak initiation angle. In agredmstt [12 ] it can be assumed that a
crack will emanate from the sharp V-notch tip itlte direction which is perpendicular
to the stressy; which represents the maximum principals stres;i@ain a virtual
cylindrical surface around the notch tip. Under Hypothesis of plane strain, such a
principal stress can be determined as:

Ogg O 1
o, =—%_——2 +*\/(Gee -0,,)° +412,
2 2 (10)
= KM — K ) 4 \/(Klﬂf1 £ — K rt ) 24 % K2r2®s™ cog(A4)0
where:
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1 (1+A, £4v)CcOSL-A,)0+X, (L-A,) coSL+A,)®

19 (6) =

2/om DA A (12)
@ 1 LA, 24)SiNA-),)8+X, (L+),)Sin(+),)0
f27(6) =

2\2m 1-A, +X,(A+A,)

and A; [13, 14] are the eigenvalues of the V-notch problevhile x; are coefficients
dependent on the notch angle [15].
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Figure 6. Plot of Kalong the thickness for a shouldered plate wigdtmm.

Due to the assumption that the crack initiationwghodirection is perpendicular to
o1, the angles of crack initiatiorly and Y, can be determined from the following
conditions:

o Ly Pol g (13)
36 lo-o, 067 |y,
and:
_1 A-lg (5 Al () . 2K3 a1
Wo —EArg{Klr E(0p) —Krte (GO)HEr 3 00563)60} (14)

It is evident from Eq. (13) and (14) that the as@®and @* are independent of the
distance from the notch tip only for the crack c@seA,=A3=0.5).
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Figure 7. Predicted values of the initiation angBgsndy,, across the thickness of a
shouldered plate with t=80 mm (see figure 6). Distafrom the notch tip, r=0.05 mm.
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