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ABSTRACT. The crack initiation direction in smooth specimens subjected to biaxial fa-
tigue loading is known to depend on material ductility. Thus, in ductile materials cracks
initiate mainly in Mode II while in brittle materials they do in Mode I. In this work the
ratio between the pure torsion and tension fatigue strength, �0=�0 is used as an indica-
tor of ductility. Predictions of the crack initiation direction in high cycle fatigue using
a microstructural fatigue model that describes the interaction between the crack and the
microstructural barriers are shown. The results obtained for both ductile (�0=�0 ' 0:5)
and fragile (�0=�0 ' 1) materials in pure torsion and tension loading are as expected.
Besides, the model can predict the initiation direction for different ratios of in-phase bi-
axial loading and for materials with an intermediate ductility. Predictions are close to
the experimental results.

INTRODUCTION

It is generally accepted that in smooth specimens of ductilematerials the initial growth of
fatigue cracks seems to be controlled by tangential stresses and thus cracks start growing
on the maximum shear stress planes (Mode II - stage I cracks).Once a crack has grown
to a certain length, it turns and continues to grow in Mode I (stage II), on the maximum
tensile stress plane [1, 2]. This shift in the plane of propagation can be related to the
activation of additional slip bands. With fragile materials, however, crack growth seems
to be governed by the normal stresses from the start, so the crack initiation and propaga-
tion directions coincide with that of the normal to the maximum tensile stress [3]. The
ratio between the pure torsion and tension fatigue strengths, �0=�0, has been used as an
indicator of ductility by several authors [3, 4, 5, 6, 7], which suggest that ductile materi-
als have ratios close to 0.5, whereas fragile materials havevalues near 1. Most materials
exhibit an intermediate degree of ductility and the fatiguestrength ratio ranges between
0.5 and 1. See, for example, the extensive experimental workof Gough´s group [3] or
the experimental data compiled by Fukuda and Nisitani [5]. Thus, there are several ex-
perimental examples in the literature showing cracks initiating neither on the maximum
principal stress planes nor on planes of maximum shear stress [8, 9].

Calculations of the orientation of the crack initiation plane in high cycle fatigue using
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a microstructural fatigue model that describes the interaction between the crack and the
microstructural barriers are presented in this work. The results obtained for both ductile
(�0=�0 ' 0:5) and fragile (�0=�0 ' 1) materials in pure torsion and tension loading are
as expected. Besides, the model can predict the initiation direction for different ratios of
in-phase biaxial loading and for materials with an intermediate ductility. Comparisons
with experimental results taken from the literature are also presented.

A MICROSTRUCTURAL MODEL FOR BIAXIAL FATIGUE LIMITS

A microstructural model for fatigue limits under biaxial in-phase loading has been re-
cently presented [10]. It is based on the work of Navarro and de los Rios on monoaxial
loads [11] and assumes that plastic slip occurs in linear slip bands running along the grains
of the material. Microcracks form in the grains whose size and crystal orientation are most
favorable for the formation of persistent slip bands. Each of these cracks expands while
its associated plastic zone is halted at a microstructural barrier (usually a grain boundary).
The plastic zone remains blocked until the condition to trigger plastic slip in the next grain
is fulfilled. The original NR model for monoaxial loading considers a cracks of length2a

inside a metal body of infinite size with a mean grain sizeD under a uniform stress� .
The crack, its plastic zone and the barrier are represented by a continuous distribution of
dislocations. The grain boundaries lie atiD=2 (with i D 1; 3; 5; ::). It is at those bound-
aries where the plastic zone will be successively contained. The microstructural barrier is
modeled as a small zone of lengthr0, which is the typical size of the interface between
grains or the distance to the sources of dislocations that can be triggered in the next grain.
The equation describing the equilibrium of the dislocations is a singular integral equation,
which is used to calculate the stress� i

3 needed at the barrier at any time. It can be shown
that� i

3 attains a maximum when the crack tip reaches the barrier. Fora freely slipping
crack, this maximum is given by:
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wheren D .iD=2/=.iD=2Cr0/. The crack will propagate into the next grain if� i
3 reaches

a value high enough for activation of dislocation sources inthe neighbouring grain. This
critical condition is written as:

� i
3

m�

i

D � i
c (2)

wherem�

i is a crystallographic orientation factor projecting� i
3 onto the plane and slip

direction of the dislocation source in the adjacent grain, and� i
c is the critical stress needed

to activate the source.� i
c can be estimated from data obtained in a conventional fatigue

test. Alternatively, it can also be derived from a Hall-Petch analysis as shown by Düber
et al. [12]. The fatigue strength of the material is the macroscopic applied stress needed
to overcome the barriers in the first grain. Therefore, substituting this value into Eq. 1,
and the resulting�1

3 value into Eq. 2, the critical stress needed to overcome the first
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barrier,m�

1�1
c , can be estimated. The values of the critical stresses needed to surmount

the following grain boundaries can be calculated in the similar manner and they can be
compared with values measured from the experimental Kitagawa-Takahashi diagram of
the material to calculate the successive values of the orientation factor ratiosm�

i =m�

1, as
suggested by de los Rios et. al [13]. If the Kitagawa-Takahashi diagram is not available,
an approximate diagram can be obtained by using the equationproposed by El-Haddad
using only the experimental values of the thresholdKth and the fatigue limit�FL of the
material [14] as done by Chaves and Navarro [15] or the heuristic formula proposed by
Vallellano et al. [16]. A model suitable for biaxial in-plane loading uses two distributions
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Figure 1. Model for biaxial loading

of dislocations with Burguer’s vectors normal (climb) and parallel (glide) to the crack
plane, the orientation of which is not known initially. Figure 1 depicts the biaxial model.
The body is subjected to both normal�1

y and tangential�1

y loads which cause a normal
stress� and a shear stress� in the crack plane, which lies at an angle˛ with respect
to the X axis. In this case, the barrier is acted upon by both a normal stress� i

3 and
a tangential stress� i

3 each coming from the corresponding distribution of dislocations.
Now the condition for activation of dislocation sources in the neighbouring grain must
take into account both components of stress: the source is activated when the sum of the
stresses resolved onto the slip plane and slip direction of the source reaches the critical
value:

� i
3

m�

�i

C
� i

3

m�

�i

D � i
c (3)

wherem�

�i andm�

�i are now the appropriate crystallographic orientation factors. As in the
monoaxial model, solving the equilibrium equations for thetwo sets of dislocations allows
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one to relate� i
3 and� i

3 at the barrier, and� and� in the crack plane. These relationships
are identical to equation 1. Thus, the triggering conditioncan be formulated as follows
for the crack in the first grain,i D 1 (see [10] for details):

1
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�
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c (4)

This equation can be put in a more eloquent form
�

�U

C
�

�U

D 1 (5)

where�U D .cos�1 n/.2=�/m�

�1�1
c and�U D .cos�1 n/.2=�/m�

�1�1
c . Equation 5 repre-

sents thebiaxial microscopic activation criterion. It defines a straight line splitting the
� � � plane in two regions (see Fig. 2). Please, note carefully that the axes in this fig-
ure are the normal (�) and tangential (�) stresses at the crack plane. According to the
present model, stress combinations above the line will trigger the source of dislocations
and cause the crack to propagate beyond the first barrier and eventually lead to failure in
a plain specimen. On the other hand, stress combinations below the line will cause cracks
to grow only up to the barrier, because plastic slip beyond the barrier can not be triggered.
In this situation, the initiated cracks will stop at the barrier and they will remain arrested
as long as the applied stresses are not increased.
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Figure 2. Biaxial microscopic activation criterion (Eq. 5)

The limit microscopic stresses,�U and �U , and the conventional macroscopic ten-
sile and torsional fatigue strengths can be related examining the corresponding tests via
Mohr’s circles. Figure 3 shows Mohr’s circles for a pure torsional load and a pure tensile
load. In a reverse torsion test, the maximum cyclic tangential stress not leading to fatigue
failure (or, in other words, the minimum stress needed to cause failure) is obviously the
torsional fatigue strength,�0. When the applied stress equals�0, the Mohr’s circle will be
tangent to the line for the microscopic activation criterion. Likewise, for a cyclic tensile
test, the applied tensile stress causing the Mohr’s circle to be tangential to the line for the
microscopic criterion will be the tensile fatigue strength, �0. Then, the following equation
relating�U and�U to the torsional and tensile fatigue strengths can be derived (see [10],
Appendix A, for derivation): if̨ D �0=�0, then

�U D
�0

2 � ˛
�U D

�0

2
p

˛ � 1
(6)
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Figure 3. Biaxial microscopic activation criterion and Mohr’s circles for pure tor-
sional and pure tensile load

CRACK INITIATION DIRECTIONS

In Fig. 3, the angle2� between a line normal to that of the biaxial activation criterion and
the horizontal axis� provides the crack initiation direction according to the model. Such
direction corresponds to a plane that forms an angle� with the direction of the maximum
principal stress. Its expression is as follows:

� D .90o � arctan.�U =�U //=2 (7)

Perfectly ductile material under pure tension and torsion

For a perfectly ductile material with�0=�0 D 0:5, one has̨ D 2 and, based on Eq. 6,
the microscopic parameters are�U D 1 and�U D �0=2. Note that this is a Tresca
type material. Figure 4 shows the tensile and torsional Mohr’s circles, and the line for the
biaxial activation criterion, which is tangential to both circles and it is a horizontal line.
Since2� D 90o, the crack initial direction,� will be at an angle of45o with respect to
the maximum principal stress direction and it will, therefore, always coincide with the
direction of maximum tangential stress. Thus, in a pure axial fatigue test, with the load
applied along theY axis, the crack will start at an angle of˛ D 45o with respect to the X
axis, whereas in a pure torsional fatigue test (�YX D �1 alone in Figure 1), the initiation
angle with respect to the X-axis would be˛ D 0o (or 90o).

Perfectly fragile material under pure tension and torsion

For a perfectly fragile material�0=�0 D 1, thus˛ D 1 and the microscopic parameters
are�U D �0 and �U D 1. Figure 5 shows the torsional and tensile Mohr’s circles,
and the line for the biaxial activation criterion, which is now a vertical line. Therefore,
2� D 0o and the crack initiation direction will be at an angle of0o with respect to the
maximum principal stress direction , i.e. it will always coincide with the direction of the
maximum normal stress. This represents an angle of˛ D 0o in a pure axial fatigue test
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Figure 4. Perfectly ductile material. Microscopic criterion. Mohr’s circles for the
pure torsion test (left) and purte tension test (right).

and˛ D 45o in a pure torsional fatigue test (loading directions as in the previous case),
again as expected.

σ

τ

τ U
→

∞

τ0

σU = σ0

2θ = 0
o

Figure 5. Perfectly fragile material. Microscopic criterion. Mohr’s circles for the
pure torsion test (outer) and purte tension test (inner).

COMPARISON WITH EXPERIMENTAL RESULTS

The calculations effected with the present model have been compared with some experi-
mental results from the literature. They are summarized in Table 1. The first four columns
of this Table show the type of material and test. The next three are related to the crack
direction: the fifth column shows the angle˛.o/ observed experimentally, that is the an-
gle that the crack at its origin forms with theX axis of the specimen (again using the
notation in figure 1. Please note that the crack direction angles have been estimated from
micrographs shown in the referenced articles and thereforethey must be taken with some
caution. The sixth column displays the prediction of the angle obtained with a classi-
cal criterion, that is, the direction of the maximum shear stress for ductile materials and
the direction of the maximum principal stress for fragile materials. And the seventh one
shows the angles calculated with the present model. The firsttwo rows refer to an exper-
imental work of Murakami and Endo [17]. The material was a lowcarbon steel, with a
value of the ratio�0=�0 D 0:59, very close to the von Mises ratio. The two cracks studied
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Table 1. Summary of the experimental results taken from literature and predictions

Crack direction,̨ .o/

Material Ref. �0=�0 Test Experimental Classical Model
0.13%C steel [17] 0.59 Axial 29 45 39.8

26 45 39.8
0.45%C steel [5] 0.59 Torsion 7 0 5.2
0.45%C steel [9] 0.59 Torsion 5 0 5.2

were both non-propagating,100 and50 �m long respectively, observed on the surface
of plain specimens subjected to tensile load at the fatigue limit (107 cycles). The mean
ferrite grain size was37 �m, so the cracks were presumably longer than one grain. The
experimental cracks directions were approximately29o and26o respectively, as measured
from the Figures8 an 9 of the article, quite far from either0o or 45o. Being a ductile
material, the prediction with a classical criterion would be45o. While the prediction with
the present model is39:8o. The third row refers to a work of Fukuda and Nisitani [5]. The
material was quite similar to the previous one, but with a smaller mean grain size, just
20 �m. The load was torsion, so the classical criterion would predict the initiation at0o.
The crack shown in the Figure10 of the article lies at7o for approximately,20 �m. The
prediction with the model is5:2o, closer to the experimental direction than the classical
criterion. Finally the last experimental work was done by Marquis and Socie [9]. The
fatigue strength ratio of the material,�0=�0, was not reported by the authors and has just
been taken as0:59, for it is also a low-carbon steel, very similar in composition and tensile
properties to the second material. It is a torsion test and the crack approximately starts
at 5o respect to the horizontal, which is the direction of the shear stress. The prediction
with the model is5:2o, quite close to the experimental value, although the limitations of
the procedure used to estimate the orientation must always be borne in mind.

CONCLUSIONS

� The biaxial microstructural model allows one to predict thecrack initiation direction
for plane specimens for different ratios of in-phase biaxial loading.

� The model is sensitive to the ductility of the material as defined in terms of the ratio
�0=�0 and predicts that the crack initiation direction for perfectly ductile materials
(i.e. materials with�0=�0 = 0.5) will coincide with that of the maximum tangential
stress (Mode II), whereas that for perfectly fragile materials (�0=�0 = 1) will be the
maximum normal stress direction (Mode I). Both results are as expected according
to classical methods.

� The analysis of experimental results has shown that the calculated values of the
initiation direction seem to be closer to the experimental ones than the values ob-
tained with the classical criteria by just invoking pure Mode I or Mode II directions.
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