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ABSTRACT. The crack initiation direction in smooth specimens subjected to biaxial fa-

tigue loading is known to depend on material ductility. Thus, in ductile materials cracks
initiate mainly in Mode Il while in brittle materials they do in Mode 1. In this work the
ratio between the pure torsion and tension fatigue strength, /oy is used as an indica-
tor of ductility. Predictions of the crack initiation direction in high cycle fatigue using
a microstructural fatigue model that describes the interaction between the crack and the
microstructural barriers are shown. The results obtained for both ductile (zo /09 >~ 0.5)
and fragile (zo /0o >~ 1) materialsin pure torsion and tension loading are as expected.
Besides, the model can predict the initiation direction for different ratios of in-phase bi-
axial loading and for materials with an intermediate ductility. Predictions are close to
the experimental results.

INTRODUCTION

It is generally accepted that in smooth specimens of dutidterials the initial growth of
fatigue cracks seems to be controlled by tangential stsesmse thus cracks start growing
on the maximum shear stress planes (Mode Il - stage | cra€ks)e a crack has grown
to a certain length, it turns and continues to grow in Modddds Il), on the maximum
tensile stress plane [1, 2]. This shift in the plane of pra@ag can be related to the
activation of additional slip bands. With fragile matesiahowever, crack growth seems
to be governed by the normal stresses from the start, so ok oritiation and propaga-
tion directions coincide with that of the normal to the manimtensile stress [3]. The
ratio between the pure torsion and tension fatigue strenggfio,, has been used as an
indicator of ductility by several authors [3, 4, 5, 6, 7], whisuggest that ductile materi-
als have ratios close to 0.5, whereas fragile materials Walves near 1. Most materials
exhibit an intermediate degree of ductility and the fatigtrength ratio ranges between
0.5and 1. See, for example, the extensive experimental afo@ough’s group [3] or
the experimental data compiled by Fukuda and Nisitani [3jus] there are several ex-
perimental examples in the literature showing cracksatiig neither on the maximum
principal stress planes nor on planes of maximum sheasq8eS].

Calculations of the orientation of the crack initiationpdan high cycle fatigue using
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a microstructural fatigue model that describes the intemadetween the crack and the
microstructural barriers are presented in this work. Tiselte obtained for both ductile
(to/00 =~ 0.5) and fragile ¢o/0o >~ 1) materials in pure torsion and tension loading are
as expected. Besides, the model can predict the initiair@ctbn for different ratios of
in-phase biaxial loading and for materials with an interratglductility. Comparisons
with experimental results taken from the literature are glesented.

A MICROSTRUCTURAL MODEL FOR BIAXIAL FATIGUE LIMITS

A microstructural model for fatigue limits under biaxialphase loading has been re-
cently presented [10]. It is based on the work of Navarro aamtbd Rios on monoaxial
loads [11] and assumes that plastic slip occurs in lineaibsinds running along the grains
of the material. Microcracks form in the grains whose siz#@ystal orientation are most
favorable for the formation of persistent slip bands. Eakcthese cracks expands while
its associated plastic zone is halted at a microstructaraidy (usually a grain boundary).
The plastic zone remains blocked until the condition tayeigplastic slip in the next grain
is fulfilled. The original NR model for monoaxial loading cders a cracks of lengtu
inside a metal body of infinite size with a mean grain sixeinder a uniform stress.
The crack, its plastic zone and the barrier are representadcbntinuous distribution of
dislocations. The grain boundaries liei&/2 (withi = 1,3,5,..). Itis at those bound-
aries where the plastic zone will be successively contaifikd microstructural barrier is
modeled as a small zone of lengi}) which is the typical size of the interface between
grains or the distance to the sources of dislocations tmalbedriggered in the next grain.
The equation describing the equilibrium of the dislocagima singular integral equation,
which is used to calculate the stregsneeded at the barrier at any time. It can be shown
thato! attains a maximum when the crack tip reaches the barrieraFaely slipping
crack, this maximum is given by:

oj= 1 [%o] ®

cosTln L2

wheren = (iD/2)/(iD/2+r,). The crack will propagate into the next graimifreaches
a value high enough for activation of dislocation sourceth@neighbouring grain. This

critical condition is written as: .
o} .
—3* =1, (2)

m;

wherem? is a crystallographic orientation factor projecting onto the plane and slip
direction of the dislocation source in the adjacent graid, is the critical stress needed
to activate the sourcer! can be estimated from data obtained in a conventional fatigu
test. Alternatively, it can also be derived from a Hall-Petmalysis as shown by Duber
et al. [12]. The fatigue strength of the material is the macopic applied stress needed
to overcome the barriers in the first grain. Therefore, suhstg this value into Eq. 1,
and the resultings] value into Eq. 2, the critical stress needed to overcome tke fi
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barrier,m}z., can be estimated. The values of the critical stresses daed®irmount
the following grain boundaries can be calculated in the lsimmanner and they can be
compared with values measured from the experimental Kitageakahashi diagram of
the material to calculate the successive values of thetatien factor ratiosn;/m7, as

suggested by de los Rios et. al [13]. If the Kitagawa-Taklahdiagram is not available,
an approximate diagram can be obtained by using the equatoposed by El-Haddad
using only the experimental values of the threshilg and the fatigue limitrg;, of the

material [14] as done by Chaves and Navarro [15] or the haifrmula proposed by

Vallellano et al. [16]. A model suitable for biaxial in-platoading uses two distributions
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Figure 1. Model for biaxial loading

of dislocations with Burguer’'s vectors normal (climb) anarglel (glide) to the crack
plane, the orientation of which is not known initially. Figul depicts the biaxial model.
The body is subjected to both normgl and tangentiat}* loads which cause a normal
stresso and a shear stressin the crack plane, which lies at an anglewith respect
to the X axis. In this case, the barrier is acted upon by both a nortne$sr. and

a tangential stress, each coming from the corresponding distribution of distimres.
Now the condition for activation of dislocation sources lre ineighbouring grain must
take into account both components of stress: the sourcéivait@e when the sum of the
stresses resolved onto the slip plane and slip directiohe&burce reaches the critical
value:

i i
o T :

St =n ®3)
mr.  m¥

ol Tl

wherem . andm}, are now the appropriate crystallographic orientationdiectAs in the
monoaxial model, solving the equilibrium equations fortive sets of dislocations allows
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one to relater} andt} at the barrier, and andz in the crack plane. These relationships
are identical to equation 1. Thus, the triggering conditan be formulated as follows
for the crack in the first grain, = 1 (see [10] for details):

1
e e B @
cosTln 2 [my,  m}
This equation can be put in a more eloquent form
(o2 T
— 4+ —=1 (5)
oy U
whereoy = (cos™ n)(2/m)m}k ) andty = (cos™'n)(2/7)m* t}. Equation 5 repre-

sents thebiaxial microscopic activation criterion. It defines a straight line splitting the
o — 1 plane in two regions (see Fig. 2). Please, note carefullyttfteaaxes in this fig-
ure are the normalb() and tangential«) stresses at the crack plane. According to the
present model, stress combinations above the line wiljénidhe source of dislocations
and cause the crack to propagate beyond the first barrienamdually lead to failure in

a plain specimen. On the other hand, stress combinatioowltleé line will cause cracks
to grow only up to the barrier, because plastic slip beyoedturier can not be triggered.
In this situation, the initiated cracks will stop at the liarand they will remain arrested
as long as the applied stresses are not increased.

T
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Figure 2. Biaxial microscopic activation criterion (Eq. 5)

The limit microscopic stressesy and tyy, and the conventional macroscopic ten-
sile and torsional fatigue strengths can be related exaitiie corresponding tests via
Mohr’s circles. Figure 3 shows Mohr’s circles for a pure tongl load and a pure tensile
load. In a reverse torsion test, the maximum cyclic tangéstress not leading to fatigue
failure (or, in other words, the minimum stress needed teedailure) is obviously the
torsional fatigue strengthy. When the applied stress equajsthe Mohr’s circle will be
tangent to the line for the microscopic activation critarid.ikewise, for a cyclic tensile
test, the applied tensile stress causing the Mohr’s ciccleettangential to the line for the
microscopic criterion will be the tensile fatigue strengtf Then, the following equation
relatingoy andzy to the torsional and tensile fatigue strengths can be difsee [10],
Appendix A, for derivation): itx = o/ 19, then

0o 0o

— Iy = —F—
2—a W

(6)

Oy =
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Figure 3. Biaxial microscopic activation criterion and Muttircles for pure tor-
sional and pure tensile load

CRACK INITIATION DIRECTIONS

In Fig. 3, the angl@#d between a line normal to that of the biaxial activation citte and
the horizontal axig provides the crack initiation direction according to thedalo Such
direction corresponds to a plane that forms an afiglath the direction of the maximum
principal stress. Its expression is as follows:

0 = (90° — arctan(ty /oy))/2 (7)

Perfectly ductile material under puretension and torsion

For a perfectly ductile material witky /09 = 0.5, one hasx = 2 and, based on Eg. 6,
the microscopic parameters asg = oo andty = op/2. Note that this is a Tresca
type material. Figure 4 shows the tensile and torsional KMalrcles, and the line for the
biaxial activation criterion, which is tangential to botincbes and it is a horizontal line.
Since26 = 90°, the crack initial directiong will be at an angle oft5° with respect to

the maximum principal stress direction and it will, therefoalways coincide with the
direction of maximum tangential stress. Thus, in a pureldatague test, with the load

applied along the” axis, the crack will start at an angle @f= 45° with respect to the X

axis, whereas in a pure torsional fatigue testy(= t°° alone in Figure 1), the initiation
angle with respect to the X-axis would ble= 0° (or 90°).

Perfectly fragile material under puretension and torsion

For a perfectly fragile material, /oy = 1, thusa = 1 and the microscopic parameters
areoy = 09 andty = oo. Figure 5 shows the torsional and tensile Mohr’s circles,
and the line for the biaxial activation criterion, which iswa vertical line. Therefore,
20 = 0° and the crack initiation direction will be at an angle(8fwith respect to the
maximum principal stress direction , i.e. it will always oide with the direction of the
maximum normal stress. This represents an angte ef 0° in a pure axial fatigue test
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Figure 4. Perfectly ductile material. Microscopic critari Mohr’s circles for the
pure torsion test (left) and purte tension test (right).

anda = 45°in a pure torsional fatigue test (loading directions as mfghevious case),
again as expected.
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Figure 5. Perfectly fragile material. Microscopic critari Mohr’s circles for the
pure torsion test (outer) and purte tension test (inner).

COMPARISON WITH EXPERIMENTAL RESULTS

The calculations effected with the present model have besrpared with some experi-
mental results from the literature. They are summarize@bid'l. The first four columns
of this Table show the type of material and test. The nexttlare related to the crack
direction: the fifth column shows the angl€¢®) observed experimentally, that is the an-
gle that the crack at its origin forms with the axis of the specimen (again using the
notation in figure 1. Please note that the crack directiotesigave been estimated from
micrographs shown in the referenced articles and therdéfiesemust be taken with some
caution. The sixth column displays the prediction of thelarabtained with a classi-
cal criterion, that is, the direction of the maximum sheaesg for ductile materials and
the direction of the maximum principal stress for fragiletemals. And the seventh one
shows the angles calculated with the present model. Thewicstows refer to an exper-
imental work of Murakami and Endo [17]. The material was a mwbon steel, with a
value of the ratiay /oy = 0.59, very close to the von Mises ratio. The two cracks studied
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Table 1. Summary of the experimental results taken fromdlitee and predictions

Crack directiong/(°)
Material Ref. 19/00 Test | Experimental Classical Model
0.13%C steel [17] 0.59 Axial 29 45 39.8
26 45 39.8
0.45%C steel [5] 0.59 Torsion 7 0 5.2
0.45%C steel [9] 0.59 Torsion 5 0 5.2

were both non-propagatingp0 and50 um long respectively, observed on the surface
of plain specimens subjected to tensile load at the fatignié (107 cycles). The mean
ferrite grain size was87 um, so the cracks were presumably longer than one grain. The
experimental cracks directions were approxima2®R/and26° respectively, as measured
from the Figures8 an 9 of the article, quite far from eithei® or 45°. Being a ductile
material, the prediction with a classical criterion wouds°. While the prediction with
the present model %9.8°. The third row refers to a work of Fukuda and Nisitani [5]. The
material was quite similar to the previous one, but with alnmanean grain size, just
20 um. The load was torsion, so the classical criterion wouldligtehe initiation at0°.

The crack shown in the Figun# of the article lies a° for approximately20 um. The
prediction with the model i$.2°, closer to the experimental direction than the classical
criterion. Finally the last experimental work was done byriftas and Socie [9]. The
fatigue strength ratio of the material,/ oo, was not reported by the authors and has just
been taken a8.59, for itis also a low-carbon steel, very similar in compasitand tensile
properties to the second material. It is a torsion test aactthck approximately starts
at 5° respect to the horizontal, which is the direction of the slsti@ss. The prediction
with the model is5.2°, quite close to the experimental value, although the litiaites of

the procedure used to estimate the orientation must alwapsine in mind.

CONCLUSIONS

e The biaxial microstructural model allows one to predictdhek initiation direction
for plane specimens for different ratios of in-phase bidwiading.

e The model is sensitive to the ductility of the material asrtkiin terms of the ratio
79/00 and predicts that the crack initiation direction for petfiductile materials
(i.e. materials withry /o¢ = 0.5) will coincide with that of the maximum tangential
stress (Mode Il), whereas that for perfectly fragile matisr{zo /oo = 1) will be the
maximum normal stress direction (Mode ). Both results @rexpected according
to classical methods.

e The analysis of experimental results has shown that thellea¢zl values of the
initiation direction seem to be closer to the experimentedothan the values ob-
tained with the classical criteria by just invoking pure Mdar Mode Il directions.
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